$$
\definecolor{comment}{RGB}{203,23,206}
$$
$$
\newcommand{\norm}[1]{\left\Vert#1\right\Vert}
\newcommand{\abs}[1]{\left\vert#1\right\vert}
\newcommand{\set}[1]{\left\{#1\right\}}
\newcommand{\Comp}{\mathbb C}
\newcommand{\Real}{\mathbb R}
\newcommand{\Nat}{\mathbb N}
\newcommand{\of}[1]{\left ( #1 \right ) }
\newcommand{\To}{\rightarrow}
\newcommand{\eps}{\varepsilon}
$$
Integral Calculus lecture notes: Sequences
Eugene Kritchevski, Vanier College, last updated on November 16, 2017
What is a sequence ?
A sequence is an infinite, ordered list of real numbers. For example, the odd numbers form the sequence
$$\set{1,3,5,7,9,\cdots}$$
and reciprocals of positive integers form the sequence
$$\set{\frac{1}{1},\frac{1}{2},\frac{1}{3},\frac{1}{4},\frac{1}{5},\cdots}.$$
A sequence
$$\set{a_1,a_2,a_3,a_4,a_5,\cdots}$$
can be denoted by $\set{a_n}_{n=1}^{\infty}$ or simply $\set{a_n}$. We refer to $a_n$ as the $n^{th}$ term of the sequence. Thus $a_1$ if the $1^{st}$ term, $a_2$ is the $2^{nd}$ term, $a_3$ is the $3^{rd}$ term, and so on.
With this notation, the sequence $\set{a_n}_{n=1}^{\infty}$ where $a_n=2n-1$ gives the odd numbers:
$a_1=2\cdot1-1=1,a_2=2\cdot2-1=2,a_3=2\cdot3-1=5$, and so on. The sequence $\displaystyle\set{\frac{1}{n}}$ gives the reciprocals of positive integers: $\displaystyle\set{\frac{1}{1},\frac{1}{2},\frac{1}{3},\frac{1}{4},\cdots}.$
Exercise: Write out the first five terms for each of the sequences below.
(a)$\displaystyle\qquad\set{n(n+1)}_{n=1}^{\infty}$
(b) $\displaystyle\qquad\set{\frac{(-1)^{n-1}}{2^n}}_{n=1}^{\infty}$
Find a formula for the $n^{th}$ term for each of the sequences below.
(c)$\displaystyle\qquad\set{5,8,11,14,17,\cdots}$
(d)$\displaystyle\qquad\set{7,0.7,0.07,0.007,0.0007,\cdots}$
Solution:
(a)$\displaystyle\qquad\set{1,2,6,12,20,\cdots}$
(b) $\displaystyle\qquad\set{\frac{1}{2},\frac{-1}{4},\frac{1}{8},\frac{-1}{16},\frac{-1}{32},\cdots}$
(c)$\displaystyle\qquad\set{5+3(n-1)}_{n=1}^{\infty}$
(d)$\displaystyle\qquad\set{7\times 10^{n-1}}_{n=1}^{\infty}$
Remarks about the notation
- The sequence $\set{a_n}_{n=1}^{\infty}$ can as well be denoted by
$\set{a_i}_{i=1}^{\infty}$, $\set{a_k}_{k=1}^{\infty}$, $\set{a_m}_{m=1}^{\infty}$ or with any other letter playing the role of an index as long as confusing notations such as $\set{a_a}_{a=1}^{\infty}$ are avoided. For instance, $\set{2i-1}_{i=1}^{\infty}$ and $\set{2n-1}_{n=1}^{\infty}$ yield exactly the same sequence of odd integers.
- It is sometimes convenient to start sequences with index $0$ instead of $1$. The sequence
$$\set{a_0,a_1,a_2,a_3,a_4,\cdots}$$
is then denoted by $\set{a_n}_{n=0}^{\infty}$. Changing the starting index will in general change the formula for the $n^{ th}$ term. Example:
$$\set{1,\frac{1}{2},\frac{1}{4},\frac{1}{8},\frac{1}{16},\cdots}=\set{\frac{1}{2^n}}_{n=0}^{\infty}=\set{\frac{1}{2^{n-1}}}_{n=1}^{\infty}$$
The graph of sequence
The graph of a sequence $\set{a_n}$ consists of all the points $(n,a_n)$ in the plane. If the sequence $\set{a_n}$ is defined by the formula $a_n=f(n)$, where $f(x)$ is a function, then the graph of the sequence consists of points on the graph of $y=f(x)$ with integer $x$-coordinates.
Informal definition of the limit of a sequence
We say that the sequence $\set{a_n}$ converges to a real number $L$ and write
$$\lim_{n\to\infty}a_n = L,$$
if $a_n$ gets arbitrarily close to $L$ provided $n$ is sufficiently large.
Example: From the graph of the sequence (see above applet) it appears that
(a) $\displaystyle\lim_{n\to\infty}\frac{1}{n}=0$
(b) $\displaystyle\lim_{n\to\infty}2+\frac{\sin(n)}{n}=2$
(c) $\displaystyle\lim_{n\to\infty}\frac{n+1}{n+2}=1$
(d) $\displaystyle\lim_{n\to\infty}(8/9)^n=0$
(e) $\displaystyle\lim_{n\to\infty}\frac{2n}{n+3}=2$
(f) $\displaystyle\lim_{n\to\infty}\sin(n) \qquad DNE$
(h) $\displaystyle\lim_{n\to\infty}(2n-1)=+\infty$
Instead of $\displaystyle\lim_{n\to\infty}a_n = L$, we sometimes write
$$a_n\to L \qquad\textrm{ as } \qquad n\to\infty,$$
or, more compactly,
$$a_n\to L.$$
Sequences defined recursively
Instead of giving the formula for the $n^{th}$ term $a_n$, one can define a sequence by specifying the initial term and a procedure for computing $a_{n}$ from the previous term $a_{n-1}$.
Example: $a_1=1$ and $a_n=a_{n-1}+2$
Let us compute the first few terms:
$$a_1=1$$
$$a_2=a_1+2=1+2=3$$
$$a_3=a_2+2=3+2=5$$
$$a_4=a_3+2=5+2=7$$
$$\cdots$$
We see that $a_n$ is the sequence of odd integers.
WARNING! $a_{n-1}$ DOES NOT MEAN $a_n-1$
Example: (Arithmetic sequences) The numbers $a$ and $d$ are fixed and the sequence $\set{a_n}_{n=0}^{\infty}$ is defined by $a_0=a$ and $a_n=a_{n-1}+d$. Then
$$a_0=a$$
$$a_1=a_0+d=a+d$$
$$a_2=a_1+d=a+2d$$
$$a_3=a_2+d=a+3d$$
$$\cdots$$
We see that $a_n=a+nd$. Let us summarize the formula for an arithmetic sequence, with strating index $0$ and also with strating index $1$.
Arithmetic sequence formula
$$\set{a,a+d,a+2d,a+3d,\cdots}=\set{a+nd}_{n=0}^{\infty}=\set{a+(n-1)d}_{n=1}^{\infty}$$
Example: (Geometric sequences) The numbers $a$ and $r$ are fixed and the sequence $\set{a_n}_{n=0}^{\infty}$ is defined by $a_0=a$ and $a_n=r a_{n-1}$. Then
$$a_0=a$$
$$a_1=r a_0=ar$$
$$a_2=r a_1=ar^2$$
$$a_3=r a_2=ar^3$$
$$\cdots$$
We see that $a_n=r a^n$.
Let us summarize the formula for a geometric sequence, with strating index $0$ and also with strating index $1$.
Geometric sequence formula
$$\set{a,ar,ar^2,ar^3,\cdots}=\set{ar^n}_{n=0}^{\infty}=\set{ar^{n-1}}_{n=1}^{\infty}$$
An application to fractals - The Sierpinski triangle We start from an equilateral triangle $T_0$ of area $a$, subdivide $T_0$ into 4 equilaterial sub-triangles and remove the triangle one in the center. We are left with the figure $T_1$ consisting of $3$ triangles. Each of the 3 triangles is again subdivided into 4 sub-triagles and the middle ones are removed. This gives the figure $T_2$ consisting of $9$ triangles. The procedure is repeated with each of the 9 triangles, and so on. After repeating the procedure $n$ times, we get the figure $T_n$ made out of $3^n$ (small) equilateral triangles.
The original applet by Michael Ortiz can be viewed here
Let $a_n$ denote the area of $T_n$. Then $a_0=a$, we have the recursion $a_n=\frac{3}{4} a_{n-1}$, and so
$$a_n=a\of{\frac{3}{4}}^n$$
We see that as $n\to\infty$, $a_n\To 0$ and so $area(T_n)=a_n\To 0$. The Sierpinski triangle $T$ is the limiting figure. Since $T\subset T_n$ for each $n$, $area(T)\leq area(T_n)$ and therefore $area(T)=0$.