Calculus I - Differential Calculus

201 - SN2 - RE

General Information

Course Outline and Course Content
  • Status of notes posted on this site: in progress (IP): dynamic and liable to change; completed (C): stable.
  • Reference Textbook: Single Variable Calculus: Early Transcendentals 9th Edition by James Stewart; available at the Library's Reference Counter
  • Suggested Problems: These do not count for any marks, but it is highly recommended that you try them.
  • Announcements

  • WeBWork
  • Your Username and default Password is your 7-digit student ID#
  • Course Material

    Lecture Notes Textbook Status Suggested Problems (from 9th Edition)
    L1. Four Ways to Represent a Function 1.1 C P.17 # 3, 16, 17, 33, 34
    L2. Four Ways to Represent a Function (Cont.d) 1.1 C P.17 # 35, 37, 39, 45, 49, 51, 67, 71, 81-85 (Odd)
    L3. A Catalog of Essential Functions 1.2 C
    L4. New Functions from Old Functions 1.3 C P.42 # 3, 9-25 (Odd), 33-55 (Odd)
    L5. Exponential Functions 1.4 C P.52 # 1, 9-19 (Odd), 29
    L6. Inverse and Logarithmic Functions 1.5 C P.64 # 3-13 (Odd), 17, 23 - 29 (Odd), 35, 43, 45, 53, 57 - 36 (Odd), 67, 69 - 78 (Odd)
    L7. The Tangent and Velocity Problem 2.1 C P.82 # 1, 3, 5, 7
    L8. The Limit of A Function 2.2 IP P.92 # 5 - 11 (Odd), 19 - 41 (Odd)
    L9. Calculating Limits Using Limit Laws 2.3 IP P.102 # 3-9 (Odd), 17-33 (Odd), 39-45(Odd), 51, 53
    L10. Continuity 2.5 IP P. # 5, 13, 15, 17, 21, 23, 29, 31, 35, 37, 43-49 (Odd), 55, 57,
    L11. Limits at Infinity; Horizontal Asymptotes 2.6 IP P.137 # 5-9 (Odd), 13-41 (Odd), 47, 49, 63
    L12. Derivatives and Rates of Change 2.7 IP P.149 # 5-13 (Odd), 19- 29 (Odd), 33, 39, 43-51 (Odd),
    L13. The Derivative as a Function 2.8 IP P.160 # 1, 5-15 (Odd), 21-31 (Odd), 33 (a-c), 57, 59
    L14. Derivatives of Polynomials and Exponential fns 3.1 C
    L15 The Product and Quotient Rules 3.2 C
    L16 Trig Derivatives 3.3 C
    L17 Chain Rule 3.4 C
    L18 Implicit Differentiation 3.5 C
    L19 Logarithmic Differentiation 3.6 IP
    L20 Related Rates 3.9 IP
    L21 Linear Approx and Differentials 3.10 IP
    L22 Max and Min Values 4.1 IP
    L23 Mean Value Theorem 4.2 IP
    L24 How Derivatives Shape Graphs 4.3 IP
    L25 L'Hospital's Rule 4.4 IP
    L26 Curve Sketching (version without extra space for answers) 4.5 IP
    L26 Curve Sketching (version with extra space for answers) 4.5 IP
    L27 Optimization 4.6 IP
    L28 Antiderivatives 4.9 IP
    L29 The Substitution Rule 5.5 IP
    L30 Separable Differential Equations 9.3 IP

    Back