

14.1 R,L,C IN SERIES IN AN AC CIRCUIT.

The scheme in figure 1 shows a resistor R , a capacitor C and an inductor L **in series** connected to the terminals of an **AC source**. As the current is the same for all elements in series, one starts by writing

$$i_R = i_C = i_L = i = i_0 \sin \omega t \quad (1)$$

As, in general, the voltage and current have a phase shift in AC circuits $v = v_0 \sin(\omega t + \phi)$ (2)

The values of v_0 and ω are fixed by the source while the **amplitude of current** " i_0 " and the **phase shift** " ϕ " between the **voltage** and the **current** depend on the numerical values of R , L , C in a circuit.

Let's refer to an moment " t " when the "**current phasor**" has the direction shown in figure 2 and let's

label as v , v_R , v_C and v_L the voltage at the source, resistor, capacitor and inductor at same moment. Next, by applying the second rule of Kirchhoff along the **current direction**, one get :

$$v - v_R - v_C - v_L = 0 \Rightarrow v = v_R + v_C + v_L \quad (3)$$

As the phase shift between the current and the voltage is different for each element, in general, there is a phase shift between terms in expression (3) and one must consider it as a phasor relationship.

- So, one draws the phasors diagram shown in fig.2 as follows:
- 1. Start by drawing the current phasor at the moment " t " ($\phi_i = \omega t$).
- 2. The phasor for **R-voltage** has zero phase shift versus current. So, this phasor is drawn along the same direction as *i-phasor*.
- 3. The phasor for **C- voltage lags** by $\pi/2$ vs. *i-phasor*.
- 4. The phasor for **L-voltage is ahead** by $\pi/2$ vs. *i-phasor*.

Then, the *phasor for applied voltage* by source will be the sum of three *potential drops' phasors* (see fig.3)

$$v_S^{ph} = v_R^{ph} + v_C^{ph} + v_L^{ph} \quad (4)$$

Note that the expression (4) is a "*vector sum of vectors*" each with a magnitude equal to the maximum value of corresponding voltage (v_{0R} , v_{0C} , v_{0L}). As the C and L phasors align in opposite direction, their "*vector*" sum will be a *phasor with magnitude*¹ $|v_{0L} - v_{0C}|$. So, the sum of three phasors is reduced into the sum of two phasors (figure 3). Now one can express the *amplitude of applied voltage* in circuit by

the sum of two other phasors' amplitudes as

$$v_0^2 = v_{0R}^2 + (v_{0L} - v_{0C})^2 \quad (5)$$

Using the relations between the **maxima values** of *instantaneous voltage* and *instantaneous current* through R , C and L , relation 5 transforms to $v_0^2 = (i_0 Z)^2 = i_0^2 [R^2 + (X_L - X_C)^2]$ (6)

The parameter $Z = \sqrt{R^2 + (X_L - X_C)^2}$ (7)

is called the **impedance** of R , C , L in **series circuit**. This parameter

Figure 1

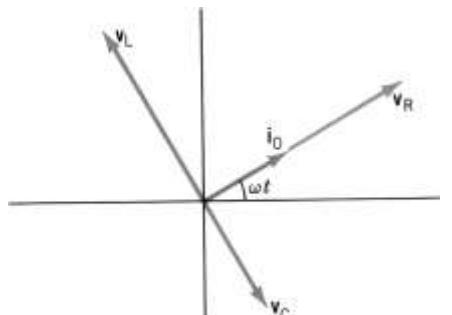


Figure 2

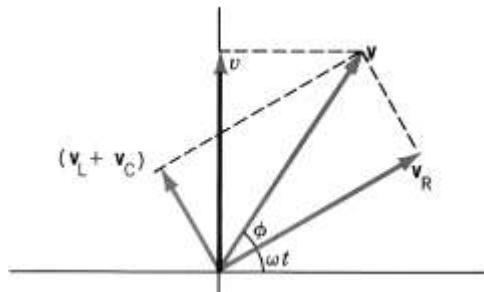


Figure 3

¹ To avoid ambiguities, we have assumed that $v_{0L} > v_{0C}$.

determines the amplitude of current in an AC circuit; its unit is ohm. Then, the relation (6) can be transformed to Ohm's law relating **the amplitudes** of **applied voltage** and the **current** in the circuit

$$v_0 = i_0 * Z \quad (8)$$

By multiplying by 0.707 both sides, one gets the Ohm's law for **rms** values

$$V = I * Z \quad (9)$$

- Knowing v_0 of AC source, one may use (8) to calculate the **amplitude of current** " i_0 " in circuit. Also, from phasor diagram in fig.3, one can find the **phase shift** between **source voltage** and **current** in circuit

$$\tan \phi = \frac{|v_L^{ph} + v_C^{ph}|}{|v_R^{ph}|} = \frac{v_{0L} - v_{0C}}{v_{0R}} = \frac{i_0(X_L - X_C)}{i_0 R} = \frac{X_L - X_C}{R}$$

So,

$$\tan \phi = \frac{X_L - X_C}{R} \quad (10)$$

If $X_L = X_C$ the phase shift $\phi = 0$; the current in circuit and the driving potential are all time in phase.

If $X_L > X_C$ the phase shift $\phi > 0$ which means that the driving **potential is ahead of current**.

If $X_L < X_C$ the phase shift $\phi < 0$ which means that the **current is ahead of driving potential**.

14.2 RESONANCE IN A CIRCUIT WITH RLC IN SERIES.

- The **impedance** " Z " defines the characteristics of current passing through the circuit when an AC voltage applies on it. One studies the " *average behaviour* " of circuit through **rms** values for current, voltage and power. If the **rms voltage** of source is V , the **rms current** I in a R,L,C in series circuit is

$$I = \frac{V}{Z} = \frac{V}{\sqrt{R^2 + (X_L - X_C)^2}} \quad (11)$$

The **rms I** value **depends on the frequency** of applied AC voltage because X_L and X_C depend on ω .

As seen from (11), there is a maximum **rms current** in circuit if $X_L - X_C = 0$; $I_{max} = \frac{V}{R}$ (12)

As $X_L = X_C \rightarrow \omega_0 L = \frac{1}{\omega_0 C} \Rightarrow \omega_0^2 = \frac{1}{LC} \Rightarrow \omega_0 = \frac{1}{\sqrt{LC}}$, the **frequency of applied voltage**

which produces **I_{max} (i.e. a resonance)** in circuit is $\omega = \omega_0 = \frac{1}{\sqrt{LC}}$ (13)

Remember that $\omega_0 = \frac{1}{\sqrt{LC}}$ is the **circular frequency** of a **C, L circuit without damping** ($R = 0$).

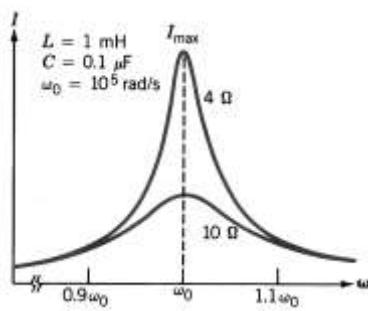


Figure 4

The graphs in fig.4 show the evolution of **rms current** in circuit when the **frequency of applied AC voltage is close to the resonance frequency of circuit ω_0** . Note that the relation (11) shows that **at resonance**, an AC circuit behaves as if containing only a resistor. At **resonance** $\phi = 0$ and the **voltage and current are in phase** which means that the **phasors of source voltage and current are aligned following the same direction at any moment of time**.

As shown in fig.4, for the same C, L values, the **resonance curve** of a L, C, R circuit becomes **sharper** (fig.4) for **smaller values of R**.

14.3 POWER IN AC CIRCUITS

- The instantaneous power delivered by an AC source in a circuit is a function of time

$$\begin{aligned}
 p &= i * v = i_0 \sin(\omega t) * v_0 \sin(\omega t + \phi) = (i_0 v_0) \sin(\omega t) [\sin(\omega t) \cos \phi + \cos(\omega t) \sin \phi] = \\
 p &= i_0 v_0 [\sin^2(\omega t) \cos \phi + \sin(\omega t) \cos(\omega t) \sin \phi] = i_0 v_0 \left\{ \sin^2(\omega t) \cos \phi + \frac{[2 \sin(\omega t) \cos(\omega t)]}{2} \sin \phi \right\} \\
 p &= i_0 v_0 [\sin^2(\omega t) \cos \phi + 0.5 * \sin(2\omega t) \sin \phi]
 \end{aligned} \tag{14}$$

For practical considerations, one refers to average value of power and this average is referred to one period of oscillation. The **average power delivered by the AC source in circuit during one period** is

$$p_{av} = \frac{1}{T} \int_0^T p dt = i_0 v_0 \cos \phi \frac{1}{T} \int_0^T \sin^2(\omega t) dt + i_0 v_0 0.5 \sin \phi \frac{1}{T} \int_0^T \sin(2\omega t) dt \tag{15}$$

$$\begin{aligned}
 \int_0^T \sin^2(\omega t) dt &= \left(\frac{t}{2} - \frac{\sin(2\omega t)}{4\omega} \right)_0^T = \left(\frac{T}{2} - \frac{\sin(2\omega T)}{4\omega} \right) - 0 = \left(\frac{T}{2} - \frac{\sin(4\pi)}{4\omega} \right) = \frac{T}{2} \\
 \int_0^T \sin(2\omega t) dt &= -\frac{1}{\omega} (\cos \omega t) \Big|_0^T = -\frac{1}{\omega} \left(\cos \frac{2\pi}{T} T - \cos 0 \right) = -\frac{1}{\omega} (\cos 2\pi - \cos 0) = -\frac{1}{\omega} (1 - 1) = 0
 \end{aligned}$$

As the first integral is equal to "T/2" and the second integral is equal **zero**, it comes out that the average power delivered by an AC source in circuit is

$$p_{av} = i_0 v_0 \cos \phi * \frac{1}{T} * \frac{T}{2} = \frac{1}{2} i_0 v_0 \cos \phi \tag{16}$$

This expression shows that the phase shift between the applied voltage and the current in circuit *affects* directly the **average power delivered** by the source in a circuit.

-If the circuit contains only a set of R, C, L in series, one may use the phasor diagram in figure 3 to get the cosine of phase shift between current and source voltage as follows

$$\cos \phi = \frac{\left| v_R^{ph} \right|}{\left| v_S^{ph} \right|} = \frac{v_{0R}}{v_0} \tag{17}$$

$$\text{and } v_0 \cos \phi = v_0 * \frac{v_{0R}}{v_0} = v_{0R} = i_0 R \tag{18}$$

$$\text{Then by substituting this in expression (16)} \quad p_{av} = \frac{1}{2} i_0 v_{0R} = \frac{1}{2} i_0^2 R = \frac{i_0}{\sqrt{2}} * \frac{i_0}{\sqrt{2}} R = I^2 R \tag{19}$$

Expression (19) shows that the average power supplied by AC source in a R,L,C circuit in series is the same as that dissipated as heat in resistor R by a current equal to I_{rms} , i.e. $p_{av} = P_R = I^2 R$

- In general, disregarding the elements in a circuit, one may rewrite the expression (16) in the form

$$P_{av} = \frac{i_0}{\sqrt{2}} \frac{v_0}{\sqrt{2}} \cos \phi = IV \cos \phi = P \quad (20)$$

At this expression the *average power supplied by the source is expressed through rms values of source voltage and current in circuit*. So, simply by measuring the **rms** values of **current** and **voltage** at **source terminals and their phase shift** one may calculate the **average power** delivered by an AC source, even *without knowing the elements of the circuit* where is supplied this power.

- The value of " **$\cos \phi$** " factor in expression $P = IV \cos \phi$ depends only on the phase shift between the current in circuit and source voltage. It affects very much (*can change it from zero to maximum value*) the power released by source in a circuit. For this reason one has named " **$\cos \phi$** " as **power factor**.

If $\cos \phi = 0$, $\phi = \pm \pi/2$ which means that *the load is purely inductive or capacitive*. In this situation, the energy delivered in circuit during a half-period is returned into the source during the other half of period when the current inverts the flowing direction. Then, *the average power* provided by the source in circuit during a period is **zero** ($P_{av} = P = 0$).

If $\cos \phi = 1$ one gets $\phi = 0$ which means that *the load is purely resistive; all the energy sent into the circuit by the source is dissipated as heat at the resistor. It does not return any more into the source*.

Remember that, for known values of R , L , C in series, one may find the " **phase shift ϕ** " from relation

$$\tan \phi = \frac{X_L - X_C}{R} = \frac{\omega L - 1/\omega C}{R} \quad (21)$$

- Let's consider another time the expression (19) and substitute there $I = \frac{V}{Z} = \frac{V}{\sqrt{R^2 + (X_L - X_C)^2}}$

$$P_{av} = I^2 R = \left(\frac{V}{Z} \right)^2 R = \frac{V^2 R}{R^2 + (X_L - X_C)^2} \quad (22)$$

Then, we can calculate Expression (22) tells that the **average power delivered in circuit R, L, C in series** depends on the **source frequency**; it is a maximum $P_{av}^{max} = V^2/R$ (23) (**there is resonance**) when $\omega = \omega_0 = \frac{1}{\sqrt{LC}}$ (24)

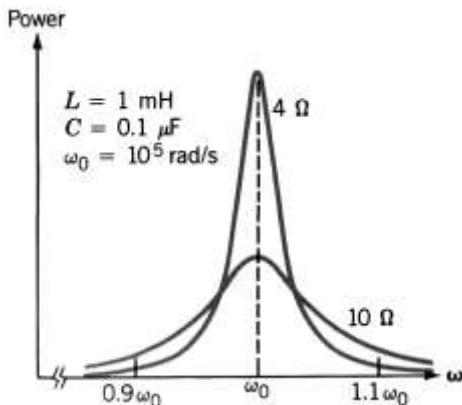


Figure 5

One uses the resonance of delivered power in R , C , L circuits for the reception of radio and TV signals. When a package of electric signals with different frequencies is applied at R , L , C circuit input, only those with frequency inside the resonance region "are allowed" to build up a current at their frequency through circuit and this way deliver their power into circuit. One should use small values of R to get sharp resonance curves (fig.5). Such R , C , L in series circuits are able to provide very selective reception by *distinguishing and rejecting even signals* with frequency *close to ω_0* . This feature is widely used to build sharp **filters for EM signals**.