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LECTURE 12 

 

INTRODUCTION 

 

-Until now, we were referring to the model of object as a single material point (i.e. a particle with object’s 

mass) and have studied the motion of object by analyzing the motion of this particle in space. This model is 

valid if all points of object have the same vector of displacement        . This condition is fulfilled in case of 

translational motion and even for rotational motion if the distance of object from the axe of rotation is much 

larger than the object dimensions (as the distances of all object points from the rotation axe are practically equal). 

 

In this chapter one deals with the rotational motion around an axis passing through the object or close to it.     

In these circumstances the displacement vector is different for each point of object. Therefore one cannot 

model the object motion as a single material point motion. In those situations, one has to model the whole 

object as a set of particles that rotate simultaneously together around the same axis of rotation. 

 

- The rigid body is an object which shape remain unchanged during the motion, i.e. the relative distances  

between particles that constitute the object do not change. Let’s consider the rotation of a rigid body around 

a  fixed axis in an inertial frame Oxyz. In this case, the axis of rotation does not move versus the frame of 

reference while the body rotates around it (fig.1). In general, one places Oz axe along the axis of rotation. 

 

 

 

 

 

 

 

           Figure 1 

 

1] ROTATIONAL KINEMATICS IN A PURE ROTATIONAL MOTION 

 

-How to describe the motion of a rigid body particles during a pure rotational motion? At first, one notes that 

during such type of rotation, all particles of object rotate by the same angle around same rotation axis even 

though their displacement vectors are different. Let’s consider the pure CCW rotation of a body around an 

axe passing through it (by point O and perpendicular to page , fig.2) during a given interval of time. 

 
Figure 2 
A section of body  

perpendicular to rotation axis         If the rotation rate changes one uses the instantaneous angular velocity                  
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The angular velocities (ωav, ω) give the number of radians covered in unit time; its SI unit is  rad / sec. 

 

In these circumstances all body particles move on circular paths 

centered on the rotation axis; this is a pure rotational motion.  

In a general rotational motion, the axis of rotation can move with 

respect to the reference frame but it remains always fixed with 

respect to the body. One studies the general rotation as a composed 

motion constituted by a pure rotation and a translation motion. 

 

During this interval of time all particles on the direction OA get rotated  

by the same angle θ. Meanwhile, the travelled distance for each of them 

depends on the distance from the axe (point O). For point A at distance     

" r "  from the axis of rotation, the length of travelled distance " s " is   

                                        *rs                                                       (1) 

( θ in radian, counted versus a fixed reference direction "say OA", taken "+" for CCW). 

Assuming that the body rotates by the angle Δθ during the short interval   

of time Δt, one defines its average angular velocity as       

                                         
if

if

av
ttt 










                                      (2)   

O 
x 

z 

y 



 2 

- In fact, the angular velocity is a vector that informs about the sense of rotation, too. Its direction is defined 

by the right hand rule; if one curls the four fingers of right hand  following the rotation sense of object, the 

 
Figure 3      

                                     

- If the magnitude of angular velocity is constant (ω = c
te
) the rotation is uniform.  One defines the period 

"T" of  an uniform rotation  as the time for one revolution of object.  From the expression (2) one can get    

Δt  =  Δθ/ωav = Δθ / ω .      As for one revolution  Δt = T and  Δθ = 2π,   it comes out that   
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One has defined the frequency of rotations "f ”  [Hz or sec
-1] as the number of revolutions in one second.      

So, for uniform rotations, one gets      
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-The instantaneous velocity of a particle is defined by its displacement "ds" for an infinitesimal time "dt ",     

as  
dt

ds
  .    For a particle at distance " r " from rotation axis, and an infinitesimal rotation by "dθ "  the 

relation (1) would give its infinitesimal displacement as                                 drds *                        (7) 

Then, the instantaneous velocity for this particle would be                        
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Expression (8) shows that the speed of object’s particles (i.e. magnitude of velocity) increases with the distance 

"r" from the axis of rotation. Also, all particles at same distance "r" from rotation axis move at same speed.  

 

 

- For situations where the angular velocity is not constant (i.e. non-uniform rotations), one has to use  

the  angular acceleration. One has defined average angular acceleration as    
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and the instantaneous angular acceleration as    
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Actually, the angular acceleration of a rotation is a vector  


   that lays on rotation axis Oz.  So,  it  

has only one component "αz = α". If αz has the same sign (+ or -) as ωz, this means that 


  has the same 

sense as 


  and the rotation is speeding up; if they have opposite sign the rotation is slowing down. 

 

 

 - For constant angular acceleration, "α" is constant and one can rewrite expression (9) as 

 

  ttav   .  Next, taking tttttt fifi  _0     one gets            t*0             (11) 

thumb gives the direction of vector 


 . The vector


  is placed on the rotation 

axis. Like in all  physics studies, one should start by defining a reference frame of 

axes. For pure rotations, one places Oz axis along the rotation axis and Ox, Oy 

perpendicular to Oz. Then, if when looking down the Oz axis, the object rotates 

counter clockwise "CCW" one considers the rotation to be positive (case of fig.3) 

and the vector 


  is aligned along positive direction of Oz. Otherwise,


  is aligned 

in opposite direction to Oz, the rotation is clockwise "CW" and it is considered to 

be negative. The expressions (2, 3) give the component of vector 


  on Oz axis. 
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This relation has the same mathematical form as that of translational velocity in 1D motion with constant 

acceleration. By using the same area technique as in 1D kinematics (see lecture 4), one may find out that  

the angle of rotation is expressed as                                                       
2

0 *
2

1
* tt              (12) 

and the angular velocity is expressed as                                                  )(2 0
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So, for a motion at                                CONSTANT  
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-If object rotates uniformly (ω = c
te
; α = 0), any particle at distance "r" from rotation axe moves at same 

constant velocity υ(r) given by (8). A particle that rotates uniformly on a circular path with radius "r" has       

a centripetal (or radial) acceleration       
r

a r
rc

2
 ,  which, by using expression (8), can be written as  
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This quantity (centripetal or radial acceleration) is a vector         directed versus the center of rotation. 

 

In case of accelerated circular motion, the angular velocity ω changes in time (see 11). Then, relation (8) 

tells that the magnitude of velocity vector   , will change, too. This    - change is directed along the tangent  

to the circular path and produces a tangential acceleration with magnitude (derivative of  8, see 10)  
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In a non-uniform rotation, a particle at distance "r "   moves at a net (translational) acceleration    

                                                                  rtrcr aaa 
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The centripetal and tangential accelerations lay on the plane of particle rotation and are perpendicular        

to each other. So, the vector of net acceleration lies on the same plane (fig 4) and has magnitude  

  

                                                                                    22
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                                    NOTE: One uses the term angular velocity and angular acceleration to distinguish  

                                    them from translational velocity and translational acceleration. For each particle of 

                                    a rotating object, the translational velocity and translational acceleration lay on the 

                                    plane that is perpendicular to the rotation  axis and contains the considered particle.  
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Figure 4 



 4 

ROLLING (an example of general or composed rotation)  

 

-Theorem: The angular velocity (ω) of rotation around an axis passing by a given point on a body is    

equal to the angular velocity of rotation around a parallel axis passing by any other point on the body.  

Proof: Consider a body rotated CCW by angle    around an axis perpendicular to the plane of figure and 

passing by central point 'c' (fig.5) during the interval of time Δt; i.e. rotating at angular velocity   
  

  
 . 

After rotation by   , the two points a, b on the body are shifted to a’, b’ respectively.  For an observer  

standing at point "a" , during the same time Δt , the line ab is rotated anticlockwise by the angle   , too. 

 

 

 

 

 

 

 

 

Figure 5                                - Now, let’s consider the uniform motion of a wheel rolling on the road. It is  

                                             a composed rotation - translation motion
1
. While a point on the rim achieves a 

full revolution around the center, the rotation axis passing by wheel center travels a distance equal to wheel 

circumference (see fig.6). One assumes a rotation without slide and a kind of static friction between  the wheel 

and road surface at each instant. During a complete revolution, i.e. during time  " T " , the center of wheel 

                               

 

 
Figure 6 

 
Figure 7 

 

-At the point of contact to the road "P",        has opposite sense to       . As their sum is zero, this point     

has zero velocity and it is momentarily at rest. For the point at the top, the vectors          and           

have the same direction (fig.7.a). Their magnitudes sum up and its speed is    υ = 2ωR.   

From another point  of  view, one may figure out that, at the shown instant, all wheel points are rotating at 

same angular velocity ω (see the theorem above) around the point of contact "P". So, their velocity vectors are 

perpendicular to the straight "dashed line" that goes from "P" to the considered point and their magnitudes are 

equal to ω*distance to P (grey vectors in fig.7.b). Therefore, the magnitude of  translational velocity, i.e. the 

particle speed  increases with distance from P- point. This effect can be easily observed on the spokes of the 

bike wheels; close to road they are easily seen (low speed) - at the top, they are all time blurred (high speed). 

                                                 
1
 Or a general rotation with respect to a frame tied to the earth 

 So, this observer would report a CCW rotation around point "a" with 

angular velocity   
  

  
. For an observer at point "b",  the line ba is 

rotated anticlockwise by the angle Δθ during the time interval Δt. So, he 

would report a rotation around point "b" with the same angular velocity           

  
  

  
. One, may figure out that by following the same logic the result is 

the same for any location of " a point " on object. 

has traveled the distance 2πR.  So, it comes out that the speed of the wheel 

center (which is equal to speed of central axis of rotation) versus ground is  

         R
T

R
ctrans *

2



      (18)   ω is the angular velocity of wheel rotation. 

One can decompose the motion of any point of wheel into two components;  

a translation " t " defined by the translation of the center of mass (CM) of 

the wheel (and axis of rotation)  and a rotation "r " around CM. Then, the net 

displacement vs Oxy (tied to ground ) is        CMrCMt sss 






             (19) 

and the velocity of a wheel point is             CMrCMt
dt

sd









        (20) 

For a point on the rim, depending on its position, these two vectors may      

be aligned or not along the same direction but their magnitudes are equal    
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2] KINETIC ENERGY OF ROTATION AND THE MOMENT OF INERTIA 

 

 
Figure 8 

 

-The expression (23) can be written in form            
2*

2

1
IK      (24)        where     

i

ii rmI 2        (25) 

Note: Expression (25) transforms into an integral when one calculates the magnitude of inertia moment for a  rigid body.  

The parameter I [kg*m
2
] is called the moment of inertia of the body with respect to the axis of rotation "Oz". 

The numerical value of I depends on the way that the mass of the body is distributed spatially with respect to 

the considered axis. A quick comparison of expression (24)   with  K = 1/2 mυ
2   

allows to figure out that, in a 

rotational motion, I-parameter plays the same role as the mass in translational motion. So, it comes out  that  

  The inertia moment is a measure of the "resistance" a body (or a system of particles) presents  to the 

  change of its rotational status of motion, i.e. to the change of its existing angular velocity. 

 

-One may feel easily the opposition effect of inertia moment by trying to rotate a hammer. When one holds    

it by the wooden end, it is more difficult to rotate it (bigger mass located at the free end, larger " ri values"  i.e. larger 

inertia moment)  than   when holding it by the metallic end. 

 
Figure 9 

 

CENTER OF MASS 

 

 - When a wheel is rolling, each rim point participates simultaneously in two motions; a translation that is 

the same as  the translation of the central point and a rotation around the central point. This central point   

is the center  of mass (CM) of the wheel. The wheel motion is an example of an object in general rotation.                       

The CM of a system of particles (which may or may not constitute a rigid body) is a point (not necessary part of 

system or of body) which motion is a common characteristic for the motion of system of particles as a whole.  

 

   
 

- The figure 8 shows a body rotating CCW at constant angular velocity 


  around 

a fixed axis. Its particles move at different translational velocities and the kinetic 

energy of body motion is the sum of their kinetic energies. Translational velocity 

of the particle with mass mi at distance ri  from the axis of rotation is  υi = ω*ri    

and its kinetic energy is     
222
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Therefore, the kinetic energy of the whole body(versus a frame with Oz along 
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- Straight from the definition (25) it comes out that the same amount 

of mass located at a bigger distance from the axis produces larger 

moment  of inertia. So, one may figure out that, for the same mass, 

the inertia moments versus the central axis of symmetry for a ring, a 

disk, and a cylinder (figure 9) are different and Iring > Idisk  > Icylinder.  

The center of mass CM  (of an object or system of particles) is a  key 

parameter that helps to find I-value for any position of rotation axis.  

 

Figure 10 A wrench spinning over a horizontal frictionless surface. CM is moving at constant velocity. 

 Oz 

 O 
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In cases when one applies the model of single material point one assumes that the whole mass of the object       

of study is located at "a representative point" which is its center of mass "CM".                                           

If one has introduced a frame of reference Oxy and knows the locations  (position vectors    )  of all particles 

that constitute the object (or the system of particles), the position of center of mass is found by the expression   
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M  is the mass of the object. The time derivative of  (26)  gives                        
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By rewriting (27)   as  





n

i

iiCM mM
1
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The relation (29) shows that the second law of Newton does apply on motion of CM. This means that CM 

moves in space as if a particle with mass M was placed at its location. For an isolated system of particles    

(or an isolated  single object)          . In this case, CM keeps its motion status " at rest or uniform motion".   

The CM of wrench in fig. 10 moves at constant velocity (along a straight line) because the net exterior force 

(weight plus normal) on wrench is zero. If thrown at an angle to horizontal, the 2D motion of its CM would be 

following a parabola, like that of a single particle with mass M. 

 

-Let’s find the total kinetic energy of an object (modelled as a system of particles, fig.11) when it rotates around 

its CM(frame O' tied to CM) while CM moves versus frame O (tied to earth). The velocity of " i
th 

" particle is    

                                                              

 
 

 

The kinetic energy of the body versus O frame is equal to the sum of kinetic energies of all its particles. So,   
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By using relation (28), one gets                           because       is the velocity of CM versus CM           

(a given point cannot move with respect to itself ) and the last term at K expression disappears. 

         
    

  
 

            

  
              and              



 '

iCMi                  (30)    

where  


'

i   is its relative velocity versus frame O' (i.e. versus CM).    

One can write its kinetic energy versus frame O as  iiii mK


  *
2

1
 (31) 

and   
'

2'2'' 2)(*)(* iCMiCMiCMiCMii



                 (32) 

Because the sum of internal forces of system of particles is zero (due to third law) 

Figure 11                         
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Thus,               rotCMCMCMi
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 where            
2

2

1
CMCM

MK      is the kinetic energy of  CM motion versus fixed frame O. 

 

                    
 

 
      

  
 

 
         

  
 

 
        

  
 

           
 

 
                                                              

 

is the  kinetic energy of rotation around CM.  ICM is the inertia moment of object vs. its center of mass. 

 

The kinetic energy of a body(or system of particles) in general rotational motion is the sum of kinetic 

energy of its CM and its rotational kinetic energy versus the CM. 

 

 

THE PARALLEL AXIS THEOREM 
 

 
Figure 12                           

 

 

a) The kinetic energy of body rotating around axis Oz passing by O, can be calculated as the sum of 

the kinetic energy of its CM motion plus its kinetic energy due to rotation around CM(see 33) 
 

                                                                  
 

 
    

  
 

 
                                             (34) 

 

In our case (see fig. 12) the point CM is rotating around point O at angular velocity ω . So, its translational or 

linear velocity is                  

                                                                      hCM *                                                                         (35) 

 

By substituting (35) at (34) we get         
22222 )*(

2
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b) By using expression (24) for the axis Oz passing by O we have           
2

2

1
OzIK                   (37) 

 

As the results of expressions (36-37) must be the same, we get           
2*hMII CMOz                      (38) 

 

 

- The inertia moments for axes passing through CM for some basic body shapes are given in tables. One 

may calculate I-values for parallel axes passing by different positions of the body by use of relation (38).  

-This theorem relates the moment of inertia I about any axis of rotation to the 

moment of inertia ICM about a parallel axis passing through CM.  Let’s consider 

an axis Oz perpendicular to the section of object (shown in figure) and passing by the 

point O at distance h from its CM. Suppose that the object rotates CCW around Oz 

at angular velocity ω. As explained previously, each point of the body is rotating at 

same angular velocity ω around a parallel axis passing by CM point, too. Note that 

a body in motion has a given numerical value of kinetic energy (versus a given 

fixed frame O) no matter the method used to calculate it. We are going to calculate 

it in two ways;  a) by using the expression (33)  for a general (or composed ) rotation  

               and     b) by using the expression (24) for a pure rotation around Oz. 

x 

y 
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Figure 13 

 

3] CONSERVATION OF MECHANICAL ENERGY IN A GENERAL ROTATION 

 

- The mechanical energy is conserved in situations where there is no external work done over the system. 

This is valid no matter the type of motion a given system is doing. Let’s apply this principle for a sphere with 

mass M and radius R that rolls without slipping on an inclined plane (fig.14).  

In rolling motion of a rigid body, f = fstatic and  Wf-static  = 0. Then, as WN  = 0, one get Wext = WN +Wf-static = 0   

for the system Earth&Sphere. Thus, it comes out that mechanical energy E(H) for the sphere at initial height  

 
Figure 14 

 

b) Remember that, the potential energy of sphere (MgH) belongs to the system sphere-earth and this means 

that the gravitation force is not an external force for this system. 

 

- At the end of inclined plane ( h = 0) the sphere is participating in two motions, a rotation around its CM 

and a translation with its CM. So, its kinetic energy is (see 33)       
22
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As its potential energy is     U(h=0) = 0  we get           
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Then, by using expression (40)                             
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As RCM *    we get   
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Note: If there is  a moving system of objects tied by a rope that pass over a pulley without sliding on it, one 

must take into account the kinetic energy of rotating pulley (1/2*ICM_pulley *ω
2
) during the motion of system.  

    

is equal to E(h) when the sphere is at any level "h". Next, we will refer to 

the end of inclined plane where h=0 and write the principle of mechanical 

energy conservation as follows                               E(H) = E(0)      (39) 

At H-level, there is only potential energy;             E(H) = MgH      (40) 

 

Notes: a) The expression E(H) =U(H) = MgH means that we have fixed 

the 0-value for potential energy at the level of  CM when the sphere is 

rolling on horizontal plane.  

H 

U(0) = 0 

 U      


