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 LECTURE_14 

 

    1] THE VECTOR OF ANGULAR MOMENTUM  

 

Figure 1                                                          nprnrpprl ˆ)(ˆ)sin( 



  [kgm
2
/s]                        (1) 

                                                                                      where  n̂  is a unit vector perpendicular to plane of         and        vectors.                                                                                                             

       The quantity "  rr sin " is  the arm of linear momentum versus O-point. It is the shortest distance  

       (i.e. on the perpendicular)  from the reference point (O in figure) to the direction of linear momentum. 

 

- Let’s consider the angular momentum when the particle moves along a straight line  and  on a circle. 
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-The angular momentum is another vector parameter widely used for 

the study of rotations. One defines it by a cross product, too. Consider a 

particle with mass  m  at position 


r (versus origin O of a reference frame) 

and moving at linear momentum 


 mp (versus the same frame).   

One defines its angular momentum versus point O as 

a] Consider a particle moving along a straight line at constant velocity (fig.2). 

The vectors of linear momentum at points A and B are equal 


 ppp BA  but 


 BA rr . By applying the right hand rule we find out that the vectors 
AAA prl



  

and  
BBB prl



  are perpendicular to the page and directed versus observer.     

Their magnitudes are equal;      prrprpl AAAAA )sin(   (see fig.2)  and 

  ABBBBB lrprprpl  )sin(  .       So,  when a particle moves at constant 

velocity, its angular momentum "versus  reference point O" is constant all time.          

If the particle is moving along 


r direction, its angular momentum is zero all time.  

Figure 3 

b] Let’s consider now a particle moving at constant speed on a circular path. 

If the origin of the reference frame is at the circle center (fig. 3),the angle between  

            , θ = 90
0
 all time. The angular momentum vector is directed perpendicular 

to the plan of the circle and (since sin90
0 
= 1) its magnitude is   

 

                                                                                              (2) 

        

As            one gets                                                                   (3) 

Figure 2 

  Figure 4 

In the case of a system of particles in space, the origin of frame cannot be at 

the circle center for all of them. So, in general,  the angular momentum vector 

         is not perpendicular to the plane of the particle motion circle (fig.4); 

and  it is not parallel to vector      . But, the component vector of     along Oz  

axis       is always parallel to       vector no matter what is the direction of    .  

In the following , one looks for a relation between vectors "      " and "    ". 

 

Remember: In rotation problems, one selects Oz axis such that         lies on it.   
 

R 
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Since,       (because    is tangent to the circular base of cone and     is   to circle tangent, see fig.4),  the angle 

between them is  90
o   

and  the magnitude of angular momentum is        l = rpsin90
o
 =rp= rmυ   (4) 

 

Then,   since   sin φ = R / r  (see fig. 4)                 2)(sin mRRRmRm
r

R
rm

r

R
lllz      

So, one gets                                                                                                                               (5) 

 

Note that expression (5) shows that magnitude of  z-component of angular momentum    , for a particle in 

rotation around  an axis Oz, depends on its inertia moment versus this axis and its angular velocity ω.  

 

- The angular momentum for a system of particles is defined as   



i

ilL   (6) ,    so  
i

izz lL      (7)       

is its z-component.  If all particles rotate about the same axis at same 


 ,  by applying the relation (5)       

for the i
th

 particle,  one gets  2iiiz Rml    and, by using (7) one finds  out that       
i

iiz RmL 2          (8) 

                                                     Ri is the distance of i
th

 particle  from axis of rotation.  

 

As the quantity z

i

ii IRm  2  gives the inertia moment of the system of particles versus Oz axis, the 

expression (8) takes the form                                                                                   zz IL                   (9) 

 

 
 Figure 5                       

 

- If the system of particles does not form a rigid body (ex. a liquid inside a rotating container) the distances            

Ri of particles change in time and the inertia moment Iz of the object is a function of time. Meanwhile, if all 

the particles rotate at same angular velocity, one may still apply the formulas 6-7-8-9 but keeping in mind 

that, in this case,  Iz  and  Lz  are  both parameters that can change with time. 

 

 

2] ROTATION DYNAMICS AND THE CONSERVATION OF ANGULAR MOMENTUM 

 

-The angular momentum of a single particle versus a point O(see 1) is defined as       


 prl             (11) 

The derivative of (11) gives       







 Frm
dt

pd
rp

dt

rd

dt

ld
     and         




 Fr
dt

ld
     (12) 

( because  0


 m      and     




 F
dt

pd
 in modern way of writing the second law of Newton). 

-In the case of a rigid body rotating around a fixed axis (fig.5),    
  values do not 

change in time. So,  z

i

ii IRm  2 is a constant parameter.  If a rigid body rotates at  

angular velocity     , one places the axe Oz along direction of 


  and the angular 

momentum     is aligned with Oz. In this case the expression (9) can be written as  

      

                                                                                                                                (10) 
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-By applying (12) for the i
th

 particle of a set of particles, one gets              
dt

ld
Fr i

iii




                     (13) 

Then, the net external torque exerted on the set of particles by the external action (that makes them rotate)  

is the sum of all torques exerted on those particles                
dt

Ld
l

dt

d

dt

ld

i

i

i

i

i

iNET







       

 So, one get                                                                                              
dt

Ld
NET




                                   (14) 





i

ilL  is the net angular momentum of the set of particles; NET



  is the net external  torque  on them.  

If the set of particles constitutes a rigid body, then inertia moment I is constant,            and the relation                

(14)  transforms into         
    

  
 

 

  
         

      

  
     which is the second law for rotation.                                                      

Note that the  expression (14)  has a larger range of applications than the 2
nd

 law for rotations because it is 

valid even in situations when inertia moment  of system may change during rotations. 

- If the net torque exerted on the set of particles is zero,   from (14)           constL
dt

Ld





0       (15)  

The expression  (15) is the mathematical expression of the principle of angular momentum conservation.  

 

If the net external torque ( versus a reference point or axis )  exerted on a system of particles is zero, then the 

vector of angular momentum of the system  (versus this point or axis) remains constant in time. 

 

In majority of scenarios, all particles of set (or a part of them like in ex.1) would be rotating (at least for a 

while) at same angular velocity around a given axis. So, one places Oz along this axis and by projecting the 

relation (14) on Oz axis, one gets                                                                  
dt

dLz
zNET                            (16)       

If the net external torque τNet-z = 0,   one finds out that      0
dt

dLz      i.e.      Lz = const.  

So, for any two moments of time t2 and t1                                            Lset-z(t2) = Lset-z(t1)                              (17) 

 

Let's consider a set of particles that rotate around the same fixed axis Oz. If external net torque versus this 

axis is zero,  the angular momentum of the set versus this axe will remain constant in time. Then, from  

relation (9)   Lz = Iz*ω  comes out that, this system of particles may change its inertia moment or its angular 

velocity or both of them but their product will remain constant in time; i.e. if  τNet-z   = 0  then  Lsys-z = c
te    

and  

 

                                                                                                      Iz(t2)*ω(t2)= Iz(t1)*ω(t1)                                         (18) 

 
 

Exemple  1. A uniform thin rod of length l = 0.5 m and mass Mrod = 4kg can rotate 

in a horizontal plane about a vertical axis passing through its center. The rod is at rest  

when a mb = 3.0 g bullet traveling in the rotation plane is fired into one end of the rod.  

As viewed from above, the bullet's path makes an angle θ = 60° with the rod. If the bullet  

lodges in the rod and the angular velocity of the rod is 5 rad/s immediately after the  

collision, what is the bullet's speed just before impact? 

 

Step 1. Objects do not move together before collision but will rotate together around Oz axis after collision. So, one 

must consider separately and get the sum of angular momentums  of the set of two objects before and after collision.    

x 

y 
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Step 2. One notes that, after the collision, the set rod-bullet will rotate CCW around the axis Oz. So, one selects Oz axe 

directed versus observer. Next , one writes (16) for the system rod - bullet   
dt

dLz
zNET        and notes that actions 

from outside the system produce     τNet-z = 0    because:                                                                                                         

a) the weight of  rod and normal force on its CM (by pivot) are applied at zero distance from Oz (i.e. zero torque);        

b) the weight of bullet (directed along - Oz ) has a torque vector in plane Oxy ( i.e. zero component on Oz direction).  

 

Step 3. As τNet-z = 0 one may apply relation  (18) for two moments; one  before  and the other one after collision. 

 

 

 

 

 

 

 

 

 

 

 

 
Step 4. As the angular momentum of the set is conserved, one can substitute (19) and (20)  at relation (17)   

           i.e.                                                Lsys-z(t2) = Lsys-z(t1)                               and get the relation 

 

                                                0.5*l*mbυ1*sin60
0
  = l

2
(Mrod/12 + mb/4]* ω      from which it comes out that   

  

            υ1 = l(Mrod/12 + mb/4]* ω   / 0.5*mb*sin60
0 
= 0.5(4/12 + 0.003/4)* 5  / 0.5*0.003*sin60

0
 =642.94m/s 

 

 

Example 2. During a jump, an aerialist makes four revolutions for 1.87s before 

attaching his hands to team partner. For the first and last quarter-revolution, 

he is in the extended orientation as shown in figure, with a rotational 

inertia moment I1=19.9kgm
2
 around his center of mass (CM shown by a red dot 

in fig). During the rest of the flight he is in a tight tuck, with I2 = 3.93kgm
2
 . 

What is his angular speed ω2 around his center of mass during the tuck? 

 

Step 1. One observes that the aerialist is participating in a composed motion;  

a) a projectile motion of his CM versus the earth frame; His CM will follow a parabola(the problem is not asking any 

question about this motion). 

b) a rotational motion  versus an Oz axe passing by his center of mass(the question is related with this motion).  

 

Step 2.One might note that the location of his CM versus the body does change during the rotation and the problem is 

giving the values of his moment of inertia versus CM. So, one consider the model "a set of particles that changes it 

inertia moment versus CM during rotations around axis Oz out of plane and passing by its CM ".  As the only 

applied force, aerialist gravity, has zero torque versus CM and all particles of the "object" rotate with the same 

angular velocity, one may apply (17) for three positions and get                        I1ω1 =   I2ω2  =  I3ω3              (21) 

 

Step 3. From relation (21) one gets       ω1 = ( I2 / I1 )* ω2  (22)         and        ω3 = ω1   (23)    because   I3 = I1 

 

Step 4. Assuming a constant angular velocity during each part of rotations, one gets   

Δt1 = Δθ1 / ω1 = (2π/4) / ω1 = 0.5π /( I2 / I1 )* ω2  ;   Δt3= Δθ3 /ω3= Δθ1 /ω1 .. Δt3= (2π/4) /ω1 = 0.5π /( I2 / I1 )* ω2                                        

and   Δt2= Δθ2 /ω2 .... Δt2 = (4*2 π - 2*0.5 π) / ω2 = 7 π/ ω2  .             Next, as             ttot  =  Δt1  +  Δt2 +  Δt3            (24)  

 ttot = 0.5π /( I2 / I1 )* ω2  + 7 π /ω2+0.5 π /( I2 / I1 )* ω2  = π /( I2 / I1 )* ω2  + 7 π /ω2 =  ( π / ω2)[(I1 / I2) + 7]   

                                     Finally     ω2 = ( π / ttot )[(I1 / I2) + 7]= (3.14/1.87s)(19.9/3.93 +7) = 20.26 r/s 

   

       

θ 

At the moment t1 (just before collision) the z- component of total linear 

momentum of set is      Lz-1  = Lrod-1  +  Lb-1 

Lrod-1 = 0 because the rod is at rest ; 

Lb-1 = rp1sinθ = (l/2)(mbυ1)sin60
0
;     So  Lz-1= 0.5lmbυ1sin60

0              (19) 

At the moment t2 (just after collision) the z- component of total  

linear momentum of set is      Lz-2 = Lrod&b-2  = Irod&b-2  * ω 

 

Irod&b-2   = Irod   +  Ib  = Mrod l
2
/12 + mb(l/2)

2
 = l

2
(Mrod /12 + mb/4) 

 

Then, Lz-2 = l
2
(Mrod /12 + mb/4)*ω                                                            (20)        

   

        


