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LECTURE 5 

 

1] DESCRIPTION OF PARTICLE MOTION IN SPACE 

 

-The position, the displacement, the velocity and the acceleration reveal their vector nature in 1-D motion 

through their sign but their full vector meaning shows up when the particle is moving in 2D or 3D space. 

Here one has to deal with their components along the selected axes. Let's consider the motion of a particle 

from point P1 to P2 in 3D space and assume that one has selected the frame Oxyz with unit vectors            
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Note: Often, one uses the symbol        for displacement. In this case "S"  is not the path length. 

 

- The average velocity vector           
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                   Figure 2                     This vector of velocity is tangent to the path shape at point P1, but note                                                         

that its magnitude is not equal to the slope of the path at that point because this is not a graph
1
 of position  

as function of  time.                

Being a vector, the instantaneous velocity can be expressed by its three components (υx, υy, υz) in Oxyz;  
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- In a similar way, one would define the average acceleration  as   
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  through the difference of 

velocity vectors at points P1 and P2 (see figure 3). Next, by decreasing the interval of time one would get  
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 It is a graph that relates different coordinates (x,y,z). 

shown in fig.1.  The position of points P1, P2 in this frame  is defined      

by the position vectors 


1r , 
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2r . The coordinates of  P1 (x1,y1,z1) and P2 

(x2,y2,z2)  are the scalar components of  
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

2r in frame Oxyz, too: 
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One defines the displacement vector (from P1 to P2) as 
Figure 1 
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         Figure 3 

 

 

 

 

 

- If a particle is moving on a plane (2D space) at constant acceleration,


 aaa PP 21 . Then, from (9)               
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taking t = 0 when the particle is at P1 , Δt = t when it gets at P2. Then,          ,            and  Δt = t.  

With these notations one gets the expression      ta
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where 
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aand __0 are constant vectors.  By projecting expression (13) over two axes Ox, Oy one gets  
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Then, one applies the area technique (as for 1D motion) for υx = υx(t), υy = υy(t) graphs and finds out that       

           
2

2

00

t
atxx

xx
               and               

2

2

00

t
atyy

yy
                                           (15) 

 

-The expressions (14) and (15) have practically the same form as in the case of 1D kinematics. So, for          

a particle moving at constant acceleration in a plane (2D motion), the following relations
2
 apply: 
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Notes 1] The motion in a plane can be decomposed into two motions along two directions perpendicular  

               to each other. Each of these motions can be studied independently; the time is the same for both. 

          2] Another set of equations for Oz axe should be added in (16) if the object moves in 3D space.   
 

 

2] PROJECTILE MOTION 

 

- One uses the term "projectile" for an object that, after being given an initial velocity, moves in space only 

under the action of gravitation force. This is a first step approximation model that neglects all other effects 

(air resistance, earth rotation …), and considers that the projectile (shot bullet, missile, golf ball,..) moves all time 

in a vertical plane . So, one can chose two axes Ox, Oy and apply the relations (16) to describe its motion. 
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 Both sets have the same mathematical form as those of 1-D kinematics.  
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The acceleration vector has three components (ax, ay, az) in Oxyz 
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- In general, one selects Oy axe along the vertical pointing up, Ox axe along the horizontal and the origin of 

coordinate system O on ground level or at the point where the projectile starts its motion. 

The relations (16) shows that one can decompose the projectile motion into two independent motions:  

a) Horizontal one at constant velocity υx=  υ0x; there is no horizontal acceleration(ax= 0) to modify it.  

b)Vertical one at acceleration ay= - g; gravity acceleration vector directed opposite to axe Oy direction. 

Remember: The gravity is the only force considered in this model. There is no motion along Oz axe 

                     because the initial velocity along Oz is zero (υ0z= 0) and it is not modified in time. 

Next, with ax = 0 and ay = - g  the expressions (16) become 
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      The two following examples cover the main situations in "projectile motion problems" 

 

Ex_1 : A ball dropped from the 6m high window of a train, moving horizontally at 50m/s, touches ground.    

     Find:  a) Its flight time interval;                           b) Its horizontal displacement when touching ground;  

     c) Flight time if the train was at rest;         d) The speed at the moment the ball touches the ground. 

     

 One starts counting the time(t = 0s) from the moment one drops the ball. As this motion happens in a  

 plane one needs only two axes (Ox, Oy). Next, one fixes the origin of the coordinative system on the  

 ground vertically down the drop point ; so, at t = 0, the  ball coordinates are (x = 0m, y = 6 m). 

 So, one has to study the motion of  a projectile with x0 = 0 , υ0x= 50 m/s and y0 = 6m , υ0y = 0. 

         )0,( 00 x
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c) The same condition defines the flight time when the train is "at rest". So, one gets the same flight time  

     t =1.11s, but in this case there is no x-change, i.e.  R=0. 

 

d) The instantaneous speed when the ball touches ground is equal to magnitude of velocity at this moment. 

So, one has to find two components of velocity at this moment. The horizontal component is υx= υox = 50m/s. 

The vertical component can be found from the last relation at (17).  As yfin = 0,  y0 = 6m  and smy /00  ,   

it comes out that     
                                   m

2
/s

2
.   Next, the formula for the 

magnitude of a vector gives      
    

                    m
2
/s

2
  and                m/s.         

Note that when touching ground its velocity vector is                     [m/s] 

a) The flight time is defined by the vertical 

motion of projectile from yo= 6m to y = 0m. 

As  υ0y = 0 , from relation (17)  one get                                            

0  =6m +0*t - g*t
2
/2  and   t

2
= 12m / 9.8m/s

2 

From the two solutions t1=1.11 and t2=-1.11s  

only the first one has physical meaning.  

So the flight time of the ball is 1.11s. 

 

b) The horizontal motion at constant velocity 

                          follows 

for 1.11s.  (as long as the ball has not touched 

the ground) . So, the horizontal shift (or range) 

 

is  R = 50*1.11= 55.5m  ("R stands for the range")  Figure 4 vy(1.11s) 
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   Ex_2 : A bullet is fired from the ground with initial velocity 0



  at the angle θ with horizontal. Find: 

 

a) The flight time;              b) The horizontal  shift to the point it touches the earth(R-range). 

b) The shape of its path;     d) The maximum height it arrives. 

 

 

 
                                                                                       

                                                                                     The flight time corresponds to the moment when   

                                                                                      the bullet touches the earth surface:   y = 0 . 
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b) The range R  is defined from the flight time and horizontal velocity     cos00 x    as follows: 
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c) The trajectory shape can be defined from the relation y = y(x). To find this expression one isolates the       

"time variable" at x- expression 
 cos0

x
t    and substitutes this at y-expression. So, one gets 
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This last expression has the form of the parabola equation   y =Ax +Bx
2
.   So, the path is a parabola. 

 

 

d) The maximum height corresponds to the moment when    0y . One can find this moment from the 

equation                                               
g

tgt



sin

sin0 0
max0                                       (22) 

The height at this moment is equal to ymax.  So  
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a) One places origin on the ground. From the figure 5, 

one finds out the two components of initial velocity as  

 

      sin__cos 0000  yx and             (18) 

Next, by using those velocity components at 

expressions (17),  for x0 = 0  and y0 = 0 one gets 
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Figure 5 

Homework: Do numerical calculations for  

sm /1000 


   and     θ = 55
0
. 
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3] UNIFORM (constant speed) CIRCULAR MOTION OF A PARTICLE 

 

- In this type of motion the magnitude of the velocity vector remains constant all time while its direction 

changes following the tangent to the circular path. As the vector of velocity changes, this is an accelerated 

motion. At first, we will find the direction of acceleration vector and then, its magnitude. 

 

- Consider a car moving at a constant speed on a straight section of highway followed by a 90
0
 right turn.  

The velocities 

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one get the average acceleration                               )(
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From this expression comes out that the direction of acceleration is the same as that of vector )( 12



 . 

The figure 6.a shows that the direction of this vector is "inside the turn and directed to turn center ".  

 

 

 

 

 

 

 

 

 

 

             Figure 6.a                                                   6.b                                                   6.c 

 

The figures 6.b,c show the situations where the turn is realized by two 45
0
 and by four 22.5

0
 consecutive 

turns. All those acceleration vectors are directed   "inside and pass by the center of the turns". When the 

number of turns increases, the curved path fits to a portion of a circular shape and, at the limit, one deals 

with the instantaneous acceleration at a point on a circular path.             
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Conclusion: The acceleration vector is center-seeking (centripetal) at each point on a curved path. 

 

-Let’s find its magnitude. Consider a particle moving on a circle at a constant speed "υ". During an interval                                                                                                                                                                                                                                                         
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

From the triangle of velocities, by taking into account that velocities have the same magnitude "υ", one finds  

 

of time      it is shifted from position 1
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r  to that 2
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This corresponds to a small rotation by   on circle. As 

the magnitudes of position vectors are equal "r" and if the 

arch is small, one can find the length(magnitude) of the 

displacement vector  as    
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Being tangent to path, the velocity vectors are perpendicular 

to the vectors 1
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Figure 7 
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out that the magnitude of  vector " velocity change " is    
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By equalizing the equations (25,26) it comes out that    
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Form (24 ) and (27) one finds out that   
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- So, in an uniform circular motion, the acceleration is all time central seeking and its magnitude is  
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-For a point moving at constant speed on a circle for a long time one introduces the concept of period T,  

i.e. the time it takes for a full revolution. As the circumference of circle is 2πr and the particle moves at 

constant speed on it, it comes out that the time for a full revolution is    
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Then, by substituting this expression for speed at (28) one may find out that 
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4] NONUNIFORM (changing speed) MOTION OF A PARTICLE ON A CURVED PATH  

 

 

 

 

 

 

 

 

 

 

 

So, one decomposes 


a  in two components (see fig.8); one radial ca


and one tangential ta


. The radial or  

centripetal acceleration is due only to the change of direction of velocity and its magnitude is  
r
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2
  

where "υ"  is  the  instantaneous  speed  and "r" the radius of circle (or path curvature at the given point).  

 

 The magnitude of tangential acceleration is equal to the derivative of " velocity magnitude = speed "  

                                             
      

  
                                                                                                  (30)       

When speeding up this derivative is positive; ta


, 


  vectors have the same direction in space. When the 

particle is slowing down, this derivative is negative and the vector ta


 has opposite direction versus 
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 .  

Consider a particle speeding up around a circle CW. Its velocity 

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direction, it comes out that 
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a  also is not aligned on radial direction.   Figure 8 
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