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LECTURE_11 

 

1] LINEAR MOMENTUM 

 

- The study of collisions between different objects showed that one can explain the experimental results 

by referring to the changes of a particular physical parameter  " the vector of linear momentum      "  
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- This parameter allows to state the second law of Newton in a very useful form ; 
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 Law:  "The net force acting on a particle is equal to the change rate of its linear momentum" 

  

If the mass of object remains constant during the observation the expression (2) transforms to the    

classic form on Newton's law                       
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Note that relation (2) can describe the motion of an object even if its mass changes during the motion 

(for example in reactive motion of rockets) while the relation (3) cannot be used in these situations.  

 

 

2] CONSERVATION OF LINEAR MOMENTUM DURING COLLISION  

 

- In one of the first recorded experiments about the linear momentum, one found out that if two objects 

 

 

 

 

 

 

 

 

 

- The collision is a type of interaction that happens during a real touch of particles (like for billiard balls)  

or during a no-touch repeal of particles (like for electrical charges of the same sign).   Let's consider the 

collision of two particles with masses m1  and  m2  moving at  velocities  1



u ,  2
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after the collision (Fig.2). In general, after a collision, there is a change of linear momentum of each 

particle but their sum, i.e. the linear momentum of the system of two particles may remain unchanged.  

 
  

      Figure 2                                             

that constitute an isolated system (i.e. net external force over them is zero) 

stick together after collision (figure 1), the total linear momentum of  

the system before and after collision is the same, i.e. 

         (before collision)  
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Further research confirmed that this is a particular application of a 

general mechanic’s principle; the conservation of linear momentum.  Figure 1 
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The Principle of Linear Momentum Conservation  states that:                        

The total linear momentum of a system  of particles remains constant      

if  the   net external force exerted on the system                is zero.  

 

                                           or                                           (5) 

For the case of two particles’ collision, this principle is written as: 
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The vector relation (6) gives three scalar relations (7), when projected on axes of an Oxyz frame. 
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- One must remember that, in order to apply the principle of linear momentum conservation, the net 

external force acting on the system must be zero. In the following, one derives the principle of linear 

momentum conservation for a system constituted by two particles with masses m1 and m2. 

 

 

 

 

 

 

 

 

 

By applying the equation (2) for the motion of particle (1) one get  
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and similarly for the particle (2)              
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By taking the side by side sum of relations (9) and (10)  one get  
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                            is the sum of external forces acting on two particles and  Setp


 is the sum 

of their linear momentums. Then, if the net external force acting over the set is zero, from relation (11)  

one gets          0
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pd Set
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In the case of many particles,               and condition (12) becomes                            (12’)              

The relation 12 (or 12’) holds on as long as there is zero net external action over the system of particles. 

 

Note: If                but it is a constant force, this force is a vector with fixed direction in space and 

it has zero components over a plane perpendicular to its direction. In this case, one may select the Ox, 

Oy axes on that plane and apply the two first relations of system (7).  So, even though             , 

provided that it is a constant force (i.e. fixed direction in space), the components of linear momentum of 

the system are conserved along the directions perpendicular to EXTSysF 



.  

The three relations (7) show that, when the 

conservation of linear momentum holds on, each of its 

components in a Oxyz reference frame is 

independently conserved. 
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Two internal forces acting on this system are due to 

gravitational attraction: 12



F  exerted on particle  "1"  

from the particle "2" and 21
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F  exerted on particle "2"  

from particle "1".   From the third law of Newton     
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Figure 3 
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3] TYPES OF COLLISIONS 

 

-The principle of linear momentum conservation is a basic principle that applies in all fields of physics; 

mechanical collisions, explosions, reactive motion, light emission/absorption, nuclear radioactive decay 

and nuclear reactions. So, it is important to clarify some basic issues related to the term "collisions". 

 

- In physics, one uses the term collision when referring to a "brief and strong interaction between two  

or more bodies". What does one consider as a brief time of interaction ? The "interval of collision ∆t " 

depends on the considered phenomena. For common mechanical collisions (between balls, cars, people, ..)   

a collision lasts from 0.001s  to 1 s.  A collision between elementary particles lasts for ~10
-23

s.                    

In the case of galaxies, a collision lasts about several millions of years.  

 

- There are two main types of collisions; elastic and inelastic.  In both cases,  if                   
       

     

during the interval of collision "∆t ", the linear momentum of the system is conserved                  

In ELASTIC collisions, the TOTAL KINETIC energy of the system is CONSERVED,  too.                

So, in the case of elastic collision between two particles of an isolated system, one get two relations 
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Note: During an elastic collision, the kinetic energy of the system is transformed (partially or completely) 

into potential elastic energy but after the collision (i.e. after ∆t) it is completely recovered into kinetic 

energy of the system.  The elastic collisions are common phenomena in atomic or nuclear physics. In 

everyday life there are no really elastic collisions. Note that one uses often the elastic model as a first 

step approximation for collisions of steel or billiard balls, but they are not really pure elastic collisions. 

 

- In INELASTIC COLLISIONS the TOTAL KINETIC ENERGY of the system is NOT CONSERVED.   

During an inelastic collision, a part of kinetic energy of the system is lost. It get converted into thermal  

energy, potential energy due to deformations, sound energy and even light energy. It is important to 

underline that the converted part does not recover into kinetic energy of system after the collision.  

In a COMPLETELY INELASTIC COLLISION, the bodies stick together after collision. 

 

 

4]    ELASTIC COLLISION OF TWO PARTICLES     

 

-The figure 4 presents the collision of two particles with masses  m1, m2  and  initial velocities      ,      

along the same space direction that we label as Ox axis.  We will consider "a central collision" which 

leaves the motion of particles along the same space direction, i.e. their velocities after collision 21 ,

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In the picture, all velocities are drawn formally at one sense. Note that  

there is collision if  021  uu      or    if 01 u   and 02 u    (which 

appears at algebraic values of velocities).   As this is an elastic collision,  

both conservation of linear momentum and kinetic energy apply.  

By projecting the relations at (13) on Ox axis, one gets: 
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 Figure 4 
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Next, by writing eq. (16) in form                        ))(())((
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  uumuum      (17) 

and dividing  eq.(17) to eq.15  one gets              )()()()( 12122211 uuuu        (18) 

 

The relation (18) shows that in a 1-D  central elastic collision, the magnitude of relative velocity of the 

second particle "or target" versus the first particle remains the same but its direction is inverted. 

(see the definition of relative velocity  in 1-D at Galileo transformations). 

 

- Ex_1. Find 21 ,  for the central collision of two particles with equal mass ( i.e. mmm  21 ).          

In this case eq.(15) can be rewritten as                     or                               (19)  

By adding/subtracting equation (18) to/from (19) one can find that                               (20)  

In particular, if before collision the target (particle 2) is at rest, i.e. 0_;0 12  uu ,  it comes out that,  

after collision 021  u ,  i.e. the first particle stops moving and 12 u i.e. the second particle moves 

with the velocity of the first particle before collision. One may see this situation often in billiard games. 

 

Ex_2. Find 21 ,  for the central collision of two particles with unequal masses ( 21 mm  ) when the 

target is at rest ( 0_;0 12  uu ). In this case eq.(15) gives                          221111  mmum          (21) 

while the equation (18) transforms to                                                               121  u                    (22) 
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The expressions (23) get simpler in the two following situations;  

 when m1 >> m2 , it comes out that  1211 2__ uandu    i.e. the first particle follows motion 

with  its initial velocity but the second one imparts with a velocity the double of u1.This happens 

if a solid object with big mass "m1" hits centrally a solid object with small mass "m2".  
This is the case of a golf ball motion after the club hits on it. 

 when m1 <<  m2,  it comes out that  0__ 211   andu   i.e. the first particle reverses the 

sense but keeps the same magnitude of velocity. This would correspond to the situation when a 

ping-pong ball hits centrally a bowling ball or a wall. 

 

Ex_3. Non-central elastic collision of two particles with same mass "m" when the target is at rest. This 

case corresponds to situation shown in figure 5 (two billiard balls when one of them is initially at rest).  

 

 
Figure 5                         (           

 

 

 

The expression (27) shows that two vectors of final linear momentum are perpendicular to each other. 

Ox 
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In this case, linear momentum conservation gives   

                                                    (24)     

By taking the square of both sides, one gets 

          
        

        
                     or 
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In elastic collisions, the kinetic energy is conserved 

                                                            (26) 

As    
   

 
 

    

  
  

  

  
     one can rewrite (26) as 
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By substituting this at expression (25) it comes out that 

                                                                  (27) 
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5] IMPULSE 

 

- When dealing with actions that last for a very short interval of time or  " impulsive actions ", one uses         

a specific physical quantity, the vector of  impulse. In general, one says that there is an impulse applied 

on  a particle if  its  linear momentum  changes (from 
i

p


 to f
p


) and defines the impulse 


I  as 

                                                                                  


 pppI if                                                  (28)    

The relation (28) shows that the impulse is a vector and its SI unit is [N*s] or [kg*m/s]. 

 

 

- Both, the impulse and the net force exerted on a particle relate to the changes of linear momentum.   

So, there is a relation between them, too. From the "modern expression" of the second law 
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By taking the integral of relation (29) one can calculate the finite change of linear momentum 


 p                   

during an interval of time [ti, tf ], i.e. the impulse applied on particle during this interval of time 
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In this case, FNet  ≈ Fimp ,               
  

  
      and    only the area under impulsive force Fimp (t)  graph 

is counted under integral (31) and in figure 5. This step is known as the impulsive approximation. 

 

 Example; The impulsive force exerted on a ball during the short interval of time a player kicks a soccer ball is 

much bigger than ball weight and it is this force that decides about the change of linear momentum of the ball. 
This impulsive force gives the major contribution when calculating the integral (30,31).  

 

-The problem with impulsive forces is that, in general, one does not know the function     Fimp = Fimp (t) 

that describes its evolution in time. That’s why one operates with an average constant force AvF  acting 

during the same time interval t  (see fig.6), such that the magnitude of its impulse (rectangle area) is 

the same as the magnitude of impulse "I " due to the real impulsive force. Then, one calculates (31) as   

  

                                                                                   tFpI Av                                                     (32) 

- In 1-D problems, 
InFinNet ppF



,,  have the same direction and (30) transforms 

 to the scalar expression             

f
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-Without going into details, we remind that the integral (31) is equal to the      

area under the graph F = F(t) shown in figure 5. The relation (31) is valid         

for any shape of force evolution in time but it is mainly used for impulsive  

forces. An impulsive force acts during a short interval of time inside which it 

increases and decreases abruptly. During this short interval, the action of 

impulsive force is much bigger than all other forces exerted on the particle.  

So, one neglects the effect of other forces when an impulsive force is in action. 

Figure 5 
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- Note that the equity of expressions (31, 32), graphically, means that the area under the graph F = F(t)  

is equal to the area of rectangle with base t  and height AvF . The presentation of  impulse magnitude 

by the area under the graphs (see  fig. 6) allows to figure out that the same change of linear momentum 

of a particle can be achieved;  a)  by use of an impulsive force applied briefly             or 

                                                  b)  by use of a "less impulsive" force applied for a longer interval of time.  

  

This kind of information is very important when: 

 The application of a very large force for a short 

interval of time can create problems for the 

stability of the object (or destroy it). 

 There is a limited flexibility about the production 

of large forces. 

 A bit longer t  interaction time does not affect 

essentially the expected effect.     

Figure 6 


