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LECTURE 2 

 

1. THE SPACE RELATED PROPRIETIES OF PHYSICAL QUANTITIES 

 

Physics uses physical parameters. In this course one will deal only
1
 with scalar and vector parameters. 

Scalar parameters do not depend on the space direction. Vector parameters depend on space directions.  

Ex: An insect moves on a plan(i.e. a 2D space);its displacement is a vector but the travelled distance is a scalar. 

 

2. VECTOR NOTATION AND OPERATIONS WITH VECTORS 

 

One draws a vector as a directed line and labels it by a symbol (letters) covered by an arrow line.  

Ex.:                                                                               

The length of the vector line is proportional to the vector magnitude. The magnitude is noted by vector 

label or its absolute value sign (ex. υ or 


 for velocity). Note that the magnitude itself is a positive scalar. 

The direction of line shows the direction of vector in space and the arrow shows its orientation sense.  

 

 

 
                                                                

 

  

 

 

3. BASIC OPERATIONS WITH VECTORS 

 

Multiplying a vector by a scalar(with or without dimensions)  

 

-When multiplied/divided by a positive scalar without dimensions, only the vector’s length changes.  

 

 

 

 

  Figure 3 (same dimension) 

 

-When multiplied/divided by a negative scalar without dimensions, the vector’s length changes and the 

orientation is inverted . 

    

  

 

                                                                       

Figure 4 (same dimensions) 

  

-If the vector is multiplied/divided by a scalar with dimensions, the same rules apply for orientation but 

the new vector has different units because it is another physical quantity (figure 5). 

 

 

 

 

 

 

tion and subtraction of vectors.  

                                                 
1
 Some physical parameters called  “tensors” depend in a more complicated way on direction in space. 

A 

B 

Figure 1 
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Figure 2 

         

         

]/[ sm

  ][2*]/[][ ssmmAB


   

Displac.= veloc. * time 
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El. field = El. Force on negative charge /q 

Figure 5 (different dimensions) 

Equal displacement vectors.  


CDAB  
Two vectors are equal if they have; 

same units, equal magnitudes and 

same orientations in space.  
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Addition and substraction of two vectors  
 

These two operations are allowed only if the vectors represent the same physical quantities (same 

dimensions) and have the same units. One cannot add a velocity vector to a displacement vector. 

One applies the Tip –Tail method for vector addition; Shift one of vectors parallel to itself so that its 

tail fits to the tip of the other one. The vector sum has the tail located at the free tail and the tip 

located at the free tip. 

 

 

 

 

 

 

 

 
Figure 6.1                                  6.2                                                         6.3                                                 6.4 

 

By comparing drawings in fig.6.2 and 6.3, 6.4 one can see that the vector    )()(


 abba         (1) 

 

-To subtract 


b  from 


a , at first, one multiplies 


b  by (-1) and gets the vector -


b (fig7.2).  

Next, one applies the rules for addition of vectors 


a and -


b (Figure 7.1-4). 

 

 

 

 

 

 

 

 

 

By comparing drawings in fig.7.3 and 7.4 one sees that  the vector         )()(


 abba              (2) 

 

 

Important note: In general, the magnitute of vector result  is not equal  to the sum or difference  

of magnitudes of added or substracted vectors.            


 baba   and 


 baba              (3)   

 

   

 

 

 

 

 

 

 

Note: The addition of vectors is associative:                      )()(


 cbacba                        (4) 

 

Fig. 8.2 and 8.3  show how to apply the tail-tip rule for three vectors.  
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
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
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

a  

Figure 7.1 (7.2) (7.3) (7.4) 


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
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
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Figure 8.1   8.2   8.3 


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

 ba ) 

 


 a  


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
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Multiplying two vectors.  

 

 

  -The  scalar (or dot *) product of two vectors is a scalar quantity with a new dimension.  

    It is defined  by the expression                                                                      cos*


 baba    (5)   

    and can be positive, negative or zero depending on the angle between the vectors (see fig. 9.1-2). 

 

        

                                                                                                                                                                                                           

       

 

 

 
                   Figure 9.1                                                                                      (9.2)     

 

                                                                                       

One can show that the scalar product is distributive:                            


 cabacba **)(*    (6) 

 

 

-The vector(cross) product of two vectors is a  new vector,  say 


C ,  noted  as     


 BxAC          (7) 

 

This vector has magnitude  sin


 BAC          (8)       φ- is the smallest angle from 


A  to 


B .          

One must refer to the angle 0 ≤ φ ≤  π  because the magnitude of new vector can not be negative. 

 

 

 

 

 

 

 

 

 

 

"The right-hand screw rule": If a right-hand screw turns from 


A to


B  along smallest angle between 

them, the direction of its advancement is that of cross product vector 


C .   

 

                                              
       

  Figure 11.1                                                                                                (11.2)  

 

As seen from the figure 11.1-2, the vector product is not commutative:          


 AxBBxA            (9) 

 

φ ≤ π/2 

cosφ > 0 

φ> π/2 

cosφ < 0 



a  



b  



a  


a  



a  



b  

b  



A  



B  

C  
sinφ>0 

The direction of 


C is perpendicular to the plane defined by vectors 


A and 


B ; its orientation is defined by convention, using the right-

hand rule:  Curl the fingers of the right hand from 


A to 


B over the 

smallest angle and keep the thumb up. Thumb’s direction gives the 

orientation of 


C .  One may use also the rule of screw; 
 Figure 10 



b  

φ 
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Unit vectors, coordinative systems and vector components. 

 

 

-  Unit vectors. A unit vector is a dimensionless vector with unit magnitude that serves only to define a 

direction in space. It is very useful for presentation of different physical vectors. In this course, we will 

use right-handed Cartesian systems (see Fig. 12) on which Ox, Oy, Oz directions are defined by three 

perpendicular unit vectors


i ,


j ,


k . By using the addition rule of vectors, one can present the vector 


A   

   
Figure 12                                                Figure 13     

 

Ex:                                        ;                                      

 

 - If 


A  is a displacement, then Ax[m], Ay [m], Az [m];  if 


A  is velocity Ax[m/s], Ay [m/s], Az [m/s] .  

The three components Ax, Ay Az  in the reference frame Oxyz define fully the vector 


A . By knowing 

the three components Ax, Ay , Az , one may find the vector magnitude via  Pythagora’s theorem as 

 

 

                                                     222

zyx AAAAA 


                                                               (11) 

 

   

-  One may express the sum or the difference of two vectors through their components as follows:     

 

              If   


 BAC          then         
xxx BAC  ;      

yyy BAC    ;   zzz BAC                   (12) 

            

              If   


 BAC          then         xxx BAC  ;      
yyy BAC    ;   zzz BAC                    (13) 

     

              If   


 AC                then         xx AC  ;                 
yy AC    ;            zz AC                       (14)  

 

The unit vector Â  along the direction of 


A  has the direction of vector 


A , the magnitude 1 but it has 

no dimension. So, by using (10) and (11) one gets  

 

                                  
222222

ˆ

zyx

zyx

zyx AAA

kAjAiA

AAA

A

A

A
A















                                                (15) 

 

Ex: If 


 kmjmima 321   then   











 kji

kji

m

kmjmim
a 802.0535.0267.0

14

321

321

321
ˆ

222
 

as             


 kAjAiAA zyx     (10) 



iAx
 is a vector along Ox axe with ׀Ax׀ 

magnitude; Ax may be positive or negative,  

The dimension of the vector 


A  goes with  

its components Ax, Ay, Az . The same set of 

unit vectors 


i ,


j ,


k  can be used to present 

different vector physical quantities. 
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Expressing the dot and cross product  by use of vector components in a Cartesiane system Oxyz 

 

 -Dot product (*)                                                                                             (16) 

    

 

 

 

 

 

One may figure out that if α, β, γ are the angles of a vector  


A  to axes Ox,Oy,Oz , then  

one may calculate the scalar components of vector  


A  along these axes as: 

 

                                                      cos_;cos_;cos AAAAAA zyx                                  (17) 

 

Note that the dot product between each two unit vectors of a Cartesian frame Oxyz, gives or 1 or 0. 

      10cos11* 


ii ;                     02/cos11* 


ji ; 02/cos11* 


ki                     

     10cos11* 


jj ;                    02/cos11* 


ij ; 02/cos11* 


kj                          (18) 

     10cos11* 


kk ;                    02/cos11* 


ik ; 02/cos11 


jk  

Consider two vectors ),,( zyx AAAA


and ),,( zyx BBBB


 and their components in the same Oxyz frame.  

                         


 kAjAiAA zyx        and    


 kBjBiBB zyx                                              (19) 

One may calculate the dot product 


A *


B   by using the components (19)  in the system of axes Oxyz. 

By applying the results of dot product between unit vectors (18), one gets 

                 zzyyxxzyxzyx BABABAkBjBiBkAjAiABA 


)(*)(*                              (20) 

Important example: Calculate the magnitude of 


A  by its components ),,( zyx AAA in a frame Oxyz.  

As  


A *


A = 20cos AAA     (*)      and      222* zyxzzyyxx AAAAAAAAAAA 


       (**) 

by comparing (*) and (**) one finds out that 
2222

zyx AAAA   and  2222

zyx AAAAA     (21)   

 

 

-Cross product (x)  After introducing the concept of unit vector one can define the cross product         

by expression                                     


 nABBxA )sin(                                                                    (22) 

where 


n  is a unit vector perpendicular to the plane defined by vectors 


A ,


B . Also, one may find 

the components of vector 


A x


B  by their components; i.e.  if ),,( zyx AAAA


 and  ),,( zyx BBBB


 



































)()()()()()(

)()()()()(

kxkBAjxkBAixkBAkxjBAjxjBAixjBA

kxiBAjxiBAixiBAkBjBiBxkAjAiABxA

zzyzxzzyyyxy

zxyxxxzyxzyx

          (23)   

 

As sin0
o
=0 and sin π/2=1, when applied between the unit vectors, the expressions (22) gives: 

00sin1 


kxkjxjixi      and     


 ikxjjkxikkjxi _;_;2/sin1   .....               (24) 

cosaa
b



 



a  



b  cosbb
a



 Figure 14 


a  



b  

φ 
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Taking into account the relations (24) one finds out that the expression (23) transforms to  

 

     

































































kBABAjBABAiBABA

iBAjBAiBAkBAjBAkBA

jxkBAixkBAkxjBAixjBAkxiBAjxiBABxA

xyyxzxxzyzzy

yzxzzyxyzxyx

yzxzzyxyzxyx )()()()()()(

        (25) 

So, if  ),,( zyx CCCCBxA


   then 

               
xyyxzzxxzyyzzyx BABACBABACBABAC  __;__;                                               (26) 

 

Note: One may get quickly those components of cross product through the following determinant       

 

           







z

z

y

y

x

xzyx

B

A

k

B

A

j

B

A

i

kCjCiCCBxA                                                                                   (27)   

 

 

The application of vector algebra in translational&rotational equilibrium 

 

- One says that a force "


F  is applied on an object " if  this object undergoes an action that tents: 

 

      1] to move it along a given direction, if the object is at rest;                 or 

      2] to change its velocity vector (magnitude, direction or both), if the object is in movement.  

          

If the object velocity does not change even though one or several forces are acting on it,  one says that it 

is in translational equilibrium. We will see that in this case the sum of all forces acting on the object is  

 

                                                                                                           0


i

iF                                    (28) 

 

Example#1: A 5kg brick remains at rest(υ=0) on a table even though one applies a 15N force  directed 

at 30
0 

above the horizontal(fig.15). Find the force of friction and the normal force on the brick. 

 

Note: The friction force is exerted by the table on the brick along its surface of contact. It has opposite 

direction to the direction of possible  block shift. Fig. 15 shows the set of all forces acting on the brick. 

 

 

 

 

 

 

 

                                              

 

 Ox:  NFFFF o
frfr

o
frx 0.1330cos15030cos15                                   

 Oy: NNNFFN oo
yg 5.4230sin1550030sin1510*5                    (taking g =10m/s

2) 

 There are four forces exerted on the brick:


frg FFNF ;;; . 

 As the brick is at rest one writes the relation (28) as 

                            0


 frg

i

i FFNFF                (29) 

Next, one selects axes Ox, Oy as shown and project the vector  

eq.(29) on each of them. ( 00 30sin15__30cos15 NFandNF yx  ) 

 

Fg= 50N 

N F=15N 

Fx 

Fy 

x 

y 

Ffr

.n 

Φ=300 

Fig.15 



 7 

Example#2:Let's consider a bolt that may rotate around a fixed axe passing through its center (axe Oz  

in fig.16). Let's assume that the exerted action is not enough to start the rotation. So, it remains at rest. 

One says that this is an object in the state of rotational equilibrium. 

 

 
 

 

So, the rotation action is  ~ 

F , ~ 



r , ~ ),sin(


Fr .  One defines the torque vector  as     


 Fxr    (30)      

- The definition torque  by the cross product does make sense: its magnitude is ),sin(


 FrFr   

and  it gives the orientation of rotational action, too. In bolt example (fig.16), the torque is directed 

along Oz      (              
                                    )  and rotational action is CCW. 

 

Important note: The torque is defined always with respect to a specific point; an axe of possible 

rotation passes by this point. When talking about the torque, one must precise the torque with respect  

to "O- point". In rotation problems, one places the origin of coordinate system at O point. 

 

 

-As we will see, in rotational equilibrium, the sum of all torques acting on the object is equal to zero. 

   

                                                                                                                                 0


i

i               (31) 

 

By applying the condition (31) in the case of bolt at rotational equilibrium, we find that the action of the  

torque  applied by wrench is cancelled by that of an "internal" torque due to friction of wall on the bolt. 

These two torques have equal magnitude but opposite direction    extext



  intint 0       (32) 

 

Exemple: Find the components of applied torque on wrench  if mcmr 3.030 


 and the   applied force 

15N is directed along Oy (or   ). So, in Oxy system (see fig.16) the applied force has the components (0, 15N, 0) 

and the position r-vector has components (0.3m,0m,0m). By using the cross product general formula on gets 

 

                         
                                 

                       
                          

 

                                                
 

So, Nmzyx 5.4;0;0   . The same result comes out by using the definition of magnitude by using 

the basic relation NmNmFrFr 5.4)90sin(153.0),sin( 0 


 .   

 

One may get the same magnitude of torque  even by applying a force with smaller magnitude but 

bigger 


r (bigger lever arm). (Ex: Find F magnitude that applies the same torque if mr 4.0


). 

Figure 16 

   y 

x 



r  

From our experience, we know that the rotational action 

(we call it torque action) on the bolt is larger if :  

-  the magnitude of exerted force F is bigger. 

-  the force is applied at bigger distance from rotation axe. 

-  the force is applied at 90
o
 angle to wrench axe.  


