
 

BRIEF SURVEY OF UNCERTAINITY IN PHYSICS LABS 

 

 

 MEASUREMENT AND UNCERTAINTY 

 

Essentially, the measurement of any physical parameter is a process of comparison to a standard unit.     

The result of a measurement is a numerical value expressed in units of selected standard. 

This numerical value is always associated with an uncertainty. 

 

Scale Reading Uncertainty. A student pours a liquid into a graduated cylinder with scale marks 1mL.  

To get an good reading, he moves his eye up/down (see Fig.1) to the level of meniscus in cylinder. If  he 

reads somewhere between 255mL and 256mL, he would say that there is a volume of 255.5mL of liquid.                

Actually, he should report that " 255.5mL " is the best estimation value for the volume of liquid and there 

is an absolute uncertainty of +/-0.5mL in this estimation. This means that "the true value" of volume is 

"for sure" inside the uncertainty interval 255mL÷256mL and there is higher 

chances to be 255.5mL.  

                                                    

                              

                            

                                   0.5mL                                                      0.5mL 

 

                                                          255.0mL                                 255.5mL                                    256.0mL 

                                                                                                                                                                                         

Fig.1    Parallax  uncertainty                                     Fig.2   Interval of Uncertainty 

 

The right way of reporting the result for this measurement is V = (255.5 +/- 0.5) mL where " 255.5ml " is 

the best estimation and " 0.5mL " is the related absolute uncertainty. 

This type of absolute uncertainty is known as "half minimum scale rule".  

The scale reading uncertainty is due to "parallax uncertainty" ( or "parallax error" ) . 

When reporting an absolute uncertainty as 0.5mL, one has assumed that the graduated cylinder is vertical 

and the student is reading the meniscus position while staying near by the graduated cylinder. 

 

If the liquid is dangerous, the volume measurements must be done inside a "protective room" and the 

student cannot place his eye close to the graduated cylinder. In this situation, the parallax uncertainty 

becomes larger; if, he reads somewhere between 254mL and 258mL, he would report the result of volume 

measurement as   V = (256.0 +/- 2.0) mL.  

This example shows that the scale reading uncertainty depends on the measurement conditions. 

 

In this type of measurement, it does make sense to accepts(without measuring) that the lower level of 

liquid fits to zero and the volume is the same as the scale reading. But, if one uses a "mm scale" ruler to 

measure the length of a muffler below car, one has to count the effect of reading uncertainty at both sides 

of muffler and the reading uncertainty would be much more than 0.5mm.  So, the reading uncertainty is 

not always equal the half minimum scale ; it depends on the conditions of measurement, too. 

 

One defines the relative uncertainty "ε" as the portion(in %) of absolute uncertainty that corresponds   

to the unit of measured parameter. So, for the measurement of liquid volume          
  

     
         

When the student stands near by the cylinder the relative uncertainty is   ε1= 0.5/255.5*100%= 0.2%   and 

when he stands outside the  "protective room the relative uncertainty is   ε2 = 2.0/256.0*100%= 0.8%   

Lower is  ε -  value, higher is the precision of a measurement. 

As  ε1  <  ε2  , there is a higher measurement precision when the student stands close by graduated cylinder.    
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THREE CASES OF UNCERTAINTY 

 

When dealing with uncertainty calculation of a given parameter one should start by distinguishing if      

it  is directly measured  or it is calculated  through some measured parameters by use of an expression. 

Rule: For a direct measurement, one must repeat the same measurement several times.   As a result, 

there are two possible situations: or one gets always the same reading  or one gets different readings.  

 

                                               MEASURED                                                          CALCULATED 

                                                                                                                                           (C)   

 

                        (A)                                                     (B)        

            SAME READINGS                  DIFFERENT READINGS 

 

  

 Fig.3  As a first step, one has to identify what case one is dealing with(A, B or C). 

 

 

CASE "A" - You measure several times a parameter and you get the same numerical reading.  

 

Example_1: You measure five times the width of a table by a meter stick which smallest unit is 1cm and 

read always 85cm. You may see that the reading is a little bit more or less than 85cm but you cannot read 

a more precise number because you cannot be precise about what portion of 1cm is the quantity "a little 

bit more or less”. So, you  refer to “the half-scale rule” and take the absolute uncertainty  equal to the 

half of the smallest unit available used for measurement (1cm); i.e.  ΔL= ±0.5cm. 

The result of measurement is reported as L= (85.0 ± 0.5)cm;  ε=0.5/85.0*100=0.6% .                             

The interval of uncertainty  for the  measured parameter  is (84.5; 85.5)cm.  

 

-If you use a meter stick with smallest unit available 1mm, you would get a more precise result but even in 

this case there is an uncertainty. Suppose that you will get always the reading L= 853mm. As there is 

always a "parallax reading uncertainty" (due to eye position) on both sides, one may get easily
1
  ΔL=  ±1, 

±2, and even ±3mm) depending on the measurement circumstances. The result of measurement would be 

reported as L= (853 ±1)mm or (853 ± 2)mm or (853 ± 3)mm. In three cases the best estimation  for the 

table length is 853mm. If the absolute uncertainty of measurement is ΔL= ± 1mm, than the true length is 

inside  the uncertainty interval (852, 854)mm and ε1=1/853*100=0.12%;  

if ΔL= ± 3mm, than  the uncertainty interval (850, 856)mm and ε3=3/853*100=0.35%.   

 

-Assume  that, by using the same meter stick, you measure the length of a calculator and a room and find 

Lcalc= (14.0 ±0.5)cm and Lroom= (525.0 ±0.5)cm. Both measurements have the same absolute uncertainty 

ΔL= ± 0.5cm but the length of room is measured more precisely because  the portion of uncertainty that 

belongs to the unit of measured length, i.e.  the relative uncertainty  is smaller.    In this case                                                

   
  

     
                                                                                 So,   one gets 

%4%57.3%100*
14

5.0
calc        and              %1.0%095.0%100*

525

5.0
room .  

 This means that  the room length is measured much more precisely (about 40 times).  

                                                 
1
 Here one assumes no reading and no uncertainty for zero position. To get ΔL=  ±0.5mm one must apply special conditions 

(like a optic device for reading...) 
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CASE "B" - You measure several times a parameter and you get different numerical readings. 

  

Example_2: You drop an object from a window and expect (from theoretical calc.)  it to hit ground after 

2sec. To verify your  expectation, you measure this time several times and record the following results;  

                             1.99s, 2.01s, 1.89s, 2.05s 1.96s, 1.99s, 2.68s, 1.97s, 2.03s, 1.95s 

  

Note: 5 measurements is a minimum reasonable number of repeated data readings, i.e. repeat five times  

         the same measurement. Due to time restrictions in lab sessions, one may accept until three repeated 

         measurements;  A result based on only one or two different measurements values is not reliable.  

 

 

As a first step one proceeds by:    VERIFYING THE VALIDITY OF RECORDED DATA 

 

The drawing of graphs during lab measurements is a practical way to estimate quickly: 

a) Whether the measurements confirm the expected behaviour predicted by the physical model. 

b) If any of recorded data is measured in wrong way and must be excluded from further treatments.   

 

To check out the data, one includes them in a graph (fig.4). From this graph one can see that: 

a) The fall time seems to be constant and very likely ~2s. So, in general, these are acceptable data. 

b) Only the seventh measure is too far from the others results and this may be due to an abnormal 

          circumstance during its measurement. To eliminate any doubt, one excludes this value from the  

          following data analysis. The remaining nine data are enough for following calculations.  

          1.99s, 2.01s, 1.89s, 2.05s, 1.96s, 1.99s, 1.97s, 2.03s, 1.95s.  

 

   
   

   Fig.4 

 

 

As a second step one proceeds by      ORGANIZING RECORDED DATA IN A TABLE 

 

Include all data in a table organized in such a way that some cells be ready to include the results of 

uncertainty calculations. In this example, you are looking to estimate a single parameter "T", so you have 

to predict (at least) three cells; one for its best estimation and two for its absolute&relative uncertainties. 

 

          Table_1 

 

t1 t2 t3 t4 t5 t6 t7 t8 t9 tav Δt ε% 

1.99s 2.01s 1.89s 2.05s 1.96s 1.99s 1.97s 2.03s 1.95s    
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t  vs measure Nb. 
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 Then one follows with                               CALCULATIONS OF UNCERTAINTIES  

 

Keep in mind that the true value of parameter is unknown. So, one uses the recorded data to find an 

estimation of the true value and the uncertainty of this estimation. 

In case "B"  the best estimation of parameter is the average of recorded data and a good estimation of 

absolute uncertainty is the mean deviation of recorded data. 

 

So,  for the data collected in experiment_2 

 

 b.1) The best estimation for falling time is equal to the average.  

    
 

 
    

 

 
                                                     

 

   

 

                

b.2) One may get a good estimation for absolute uncertainty by using the spread of measured data  

        from their average value. The mean deviation gives the average of this spread.         

 

                              
 

 
         

 
    

 

 
                         

                                                  

          

This way, one would say that the true value of fall time is inside the uncertainty interval  (1.94, 2.02)sec  

or between tmin =1. 94s and tmax = 2.02s  with best estimation 1.98s. (after rounding off )  

                                                                              The result is reported as         t = (1.98 +/- 0.04)sec            
 

 

b.3)  Another (statistically better) estimation of spread  is the “standard
2
 deviation” of data.  

 

       Based on our example data we get                   
          

 
   

   
   

             
   

   
                      

 

After rounding off,  the result is reported as                                                t = (1.98 +/- 0.05)sec           

 

For estimation of data spread, a larger interval of uncertainty means a more “conservative estimation” 

but  in  the same time a more reliable estimation. That’s why the standard deviation is a better  estimation 

for   the absolute uncertainty. Note that we get Δt = +/- 0.05s   when using the standard deviation   and                  

Δt = +/- 0.04s   when using the mean deviation. Also, the relative uncertainty calculated from the 

standard deviation is larger. In our example the relative  uncertainty of measurements is 

 

        
    

   
      

     

     
                                   when using the standard deviation            

   and    
    

   
      

     

     
                                  when using the mean deviation   

 

The relative uncertainty 2.4% means lower precision of measurements but it is more reliable estimation. 

 

Important: The absolute and relative uncertainty can never be zero. 

                                                 
2
 The standard deviation can be calculated direct in Excel and in many calculators. 
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-Assume that you repeat five times a given measurement and you read all times the same value of X.                       

So, by applying the rules of case “B” you may report  Xbest = XAv  = 5X/5 = X   and   ΔXb = 0. 

 But this way you forget that, for each measurement, there is an uncertainty of type “A” and this means 

that there is at least  ΔXA  = ½ (smallest scale unit).  This example shows that, in general, the absolute 

uncertainty  of directly measured parameters should be calculated as               ΔX =  ΔXA + ΔXB                                                                             

 

Note_1 : In those cases where  ΔXB  >> ΔXA  one may simply take ΔX =  ΔXB 

 In exemple_2, the time is measured with 2 decimals. This means that  ΔXA =  ΔtA =  0.01/2 = 0.005s 

As  ΔXB= ΔtB = 0.05s is ten times bigger one may neglect ΔtA = 0.005s    and   get    Δt = ΔtB = 0.05s.                     

But if ΔtB = 0.01s and ΔtA= 0.005s one should not neglect ΔtA= 0.005s  because  it  is  50%  of  ΔtB.                    

So, one must calculate the absolute uncertainty as Δt = 0.01 +0.005=0.015s 

 

Note_2: When measuring a quantum parameter " X " one records "a spectrum or a distribution of  values"  

              for this parameter. This is a situation where ΔXB  >> ΔXA  and one takes ΔX =  ΔXB = σ(X) 

 

 Note_3: In college labs one considers that a measurement has a good precision if the relative uncertainty 

           is ε < 10% . If the relative uncertainty is ε > 10%, one may proceed by: 

a) Cancelling any particular data “shifted too much from the best estimation value” ; 

b) Increasing the number of recorded data by repeating more times the measurement; 

c) Improving the measurement procedure.   

 

 

CASE "C"   Estimation of Uncertainties for Calculated Parameters (Uncertainty propagation) 

 

Very often, one uses the experimental data recorded for several parameters and a mathematical expression 

to estimate the value of another parameter of interests (POI). As the measured parameters are estimated 

with an uncertainty, it is clear that the estimation of POI with have uncertainty, too. 

The calculation of best estimation for POI is based on the best estimations of measured parameters and 

the formula that relates POI with measured parameters.  The uncertainty of POI estimation is calculated 

by using the Max_Min method. This method calculates the limits of uncertainty interval, POImin & POImax  

by using the formula relating POI with measured parameters and refers to the combination of their 

limiting values in such a way that the result be the smallest or the largest possible.  

 

Example_3a. To measure the volume of an irregular shape solid, one starts by filling a graduated cylinder 

with water and records the volume reading, say V1= 25.0mL. Next, one plunges the solid in water and 

records the new the volume reading, say V2 = 125.5mL and calculates the solid volume as Vsolid  =  V2 - V1 

Those data mean that minimum scale mark is 1mL; so, V1= (25.0+/-0.5)mL    and    V2= (125.5+/-0.5)mL.                   

Then, one get Vbest-solid = 125.5 - 25.0 = 100.5mL;         Vmax-solid = (125.5 + 0.5)  - (25.0 - 0.5) = 101.5mL;                                  

Vmin-solid = (125.5 - 0.5)  - (25.0 + 0.5) = 99.5mL;  ΔV = (Vmax-solid - Vmin-solid)/2= (101.5 - 99.5) /2 =1.0mL 

Finally, one get  Vsolid  = (100.5+/-1.0)mL  and      ε%    = 1.0/100.5*100% = 0.99%  ≈ 1% 

 

Example_3b. To find the volume of a rectangular pool with constant depth, one uses a one meter stick to 

measure its length L, width W and depth D.  Next, one calculates the volume by formula V = L * W * D. 

Assume that the measurement results are L = (25.5 ± 0.5)m, W = 12.0 ±0.5m, D = 3.5 ±0.5m. In this case 

the best estimation for the volume is  Vbest = 25.5*12.0*3.5=1071.0 m
3
. This estimation of volume is 

associated by an uncertainty calculated by Max-Min methods as follows                              

Vmin=Lmin*Wmin*Dmin= 25*11.5*3 = 862.5m
3     

and     Vmax=Lmax*Wmax*Dmax= 26*12.5*4 = 1300.0m
3  
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So, the uncertainty interval for the volume of pool is (862.5, 1300.0) and the absolute uncertainty is  

 ΔV= (Vmax-Vmin)/2 = (1300.0 - 862.5)/2= 218.7m
3 while the relative error is %42.20%100*

0.1071

7.218


V
  

When applying the sig. figure rules, one gets Vbest =1100 m
3
; ΔV= 220m

3
; εV =20.% 

 

 

Note_1: When applying the Max-Min method to calculate the uncertainty, one must pay attention 

               to the mathematical expression that relates POI to the measured parameters. 

  

Example_4  -   You measure the period of an oscillation and you use it to calculate the frequency (POI). 

                          As f = 1/ T,  fbest = 1/ Tav the max-min method gives  fmin  = 1 / Tmax  and  fmax =1 / Tmin  

 

Example_5   -    If   z = x – y,    zbest = xav –yav      and    MINMAXMAX yxz    and    MAXMINMIN yxz  . 

 

Note_2.   Use the best estimations of parameters in the expression to calculate the best estimation for POI.    

                If they are not available one may use POImiddle as the best estimation for POI  

   

                                                            
2

MINMAX
middle

POIPOI
POI


                                                        

Be aware though, that POImiddle is not always equal to best estimation of POI.            So, the pool volume 

Vmiddle= (1300+862.5)/2 =1081.3m
3
 is different from Vbest =1071.0 m

3
( but both are rounded off as 1100). 

 

 

 

HOW TO PRESENT THE RESULT OF UNCERTAINTY CALCULATIONS?  

 

You must provide the best estimation, the absolute uncertainty and the relative uncertainty. So, for the 

last example, the result of uncertainty calculations  should be presented as follows:                                                 

V=  (1100 ± 220) m
3
 , ε% = (220/1100)*100% = 20% 

 

Note: Absolute uncertainties must be quoted to the same number of decimals  as the best estimation.  

The use of scientific notation helps to prevent confusion about the number of significant figures.  

 

Example_6: If calculations generate, say                                 A = (0.03456789 ± 0.00245678)m 

                    This should be presented after being rounded off (leave 1 or 2 digits after decimal point):                                      

                       A = (3.5 ± 0.2) * 10
-2

m  or  A = (3.46 ± 0.25) * 10
-2

m 

 

 

HOW TO CHECK WHETHER TWO QUANTITIES "A" and "B" ARE EQUAL? 

 

This question appears essentially in two situations: 

  1.One measures the same parameter by two different methods and want to verify if the results are equal. 

  2.One uses measurements to verify if  a theoretical expression is right. 

 

In the first case, one have to compare the estimations A ± ΔA and B ± ΔB  for  the " two parameters ". The 

second case can be transformed easily to the first case by noting the measurement as  A and the expression 

result as  B.  Then, the procedure is the same.   
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   Example:   One wants to verify if the thins lens equation  1/p + 1/q = 1/f.  So, one notes 1/p  + 1/q = A  

   and  1/f = B , records data for A and B, draws their uncertainty intervals and applies the following rule: 

   Rule: One considers that the quantities A and B are equal
3
 if their uncertainty intervals overlap.  

 

 

                  Fig.5 

                       

 

 

                 

  WORK WITH GRAPHS 

 

One uses the graphs to check the theoretical expressions or to find the values of physical parameters. 

 Example_7; Theoretical study of simple pendulum oscillation shows that its period is gLT /2  and 

one wants to verify this experimentally. To simplify the procedure, one prefers to get a linear relationship 

between two parameters one can measure; in this case period T and length L. So, one squares both sides, 

get  L
g

T *
4 2

2 
   and by noting T

2
 = y, L = x    gets the linear expression  y = a*x  where a = 4π

2
/g. 

At first, one has to verify experimentally if there is such a relation between T
2
 and L. Note that if this is 

verified, one can use the experimental value of “a” to calculate the free fall constant value “g = 4π
2
/a”. 

 

- Assume that after measuring the period for a given pendulum length several times, calculated the best 

values and uncertainties for y(=T
2
) and repeated this for a set of different values of length x(L=1,...,6m), 

one gets the data shown in table No 2. At first, one draws the graph of best data (X,Ybest). One can see that 

they are aligned on a straight line, as expected. Next, one uses Excel to find the best linear fitting line for 

these data and makes this line to pass from (x = 0, y = 0) because this is predicted from the theoretical 

formula. One gets a straight line with abest = 4.065. Using the theoretical formula one calculates the best 

estimation for  gbest = 4π
2
/aav = 4π

2
/4.065= 9.70 which is not far from the expected value 9.8. Next, one 

adds the uncertainties in the graph(that appear as error bars) and draws the best linear fitting with 

maximum /minimum slope that pass by origin. From those graphs one gets amin= 3.635 and amax= 4.202.   

So,  gmin = 4π
2
/amax = 4π

2
/4.202= 9.38     and     gmax = 4π

2
/amin = 4π

2
/3.635= 10.85 

 

                        Table_2 

X Y(best) 
Y 
 (+/-) Ymin Ymax  

Max. 
Slope 

Min. 
Slope 

  1 4 1.5 2.5 5.5  4.202 3.635 

2 8.3 1.8 6.5 10.1    

3 11.8 1.3 10.5 13.1  P1 (1; 1.5) P1 (1; 5.5) 

4 17 1.6 15.4 18.6  P2 (6; 25.5) P2 (6; 21.5) 

5 21 1.1 19.9 22.1    

6 23.5 2 21.5 25.5    

                                                 
3
 They should be expressed in the same unit, for sure. 

Amin Amax 

 Bmin Bmax 

       This way, by using the graphs one has: 

1-  proved experimentally that the theoretical relation     between T and L is right. 

2-  found out that the measurements are accurate because    the uncertainty interval (9.38, 10.85) for “g” 

     does include the officially accepted value g = 9.8m/s
2  

 3-  found the absolute uncertainty  Δg =(10.85-9.38)/2=0.735m/s
2 

     The relative error is ε = (0.735/9.70)*100% = 7.6%  

     which is an acceptable (< 10%) precision of measurement.  
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ABOUT THE ACCURACY AND PRECISION 
 

- Understanding the difference between accuracy and precision by use of hits distribution in a Dart’s play. 

 

 

   

 

 

 

 

 

 

 

- As a rule, before using a device (or method) for measurements, one should make sure that the device 

(or method) produces accurate results in the range of expected values for the measured parameter. This 

is an obligatory step known as the calibration procedure. During a calibration procedure one records a set 

of data for a known parameter and makes sure that the result of measurements is accurate. One considers 

that a calibrated device (or method) produces accurate results inside calibration range any time it is used.   

 

In principle, the result of an experiment is accurate if the “best estimation” is equal to the “ officially 

accepted value”. In practice one considers that a measurement is “accurate” if the ” officially accepted 

value” falls inside the interval of uncertainty of measured parameter; otherwise the result is inaccurate.  

 

The quantity 100x
C

CC

off

offBest
accu


    %    (often ambiguously named as error) gives the relative shift of 

best estimation from the officially accepted value Coff. It is clear that the accuracy is higher when εaccu 

is smaller. But, the measurement is inaccurate if   εaccu  > ε  (relative uncertainty of measurement).  

        Remember that relative uncertainty 100x
C

C

Best


 %  is different from εaccu. 

Note: For a big number of measured data and accurate measurement, the best estimation should fit to 

          the expected value of parameter and εaccu  should be practically zero.  Meanwhile the relative  

         uncertainty ε  tents to a fixed value different from zero. Actually, ε can never be equal to zero.  

y = 4.0659x 

y = 4.2027x 

y = 3.6351x 
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