K.Angoni, Physics Department, Vanier College
BRIEF SURVEY OF UNCERTAINITY IN PHYSICS LABS
MEASUREMENT AND UNCERTAINTY

Essentially, the measurement of any physical parameter is a process of comparison to a standard unit.
The result of a measurement is a numerical value expressed in units of selected standard.
This numerical value is always associated with an uncertainty.

Scale Reading Uncertainty. A student pours a liquid into a graduated cylinder with scale marks 1mL.
To get an good reading, he moves his eye up/down (see Fig.1) to the level of meniscus in cylinder. If he
reads somewhere between 255mL and 256mL, he would say that there is a volume of 255.5mL of liquid.
Actually, he should report that " 255.5mL " is the best estimation value for the volume of liquid and there
is an absolute uncertainty of +/-0.5mL in this estimation. This means that "the true value" of volume is
"for sure" inside the uncertainty interval 255mL+256mL and there is higher chances to be 255.5mL.
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The right way of reporting the result for this measurement is V = (255.5 +/- 0.5) mL where ** 255.5ml "
is the best estimation and " 0.5mL " is the related absolute uncertainty.

This type of absolute uncertainty estimation is known as "half minimum scale rule".

The scale reading uncertainty is due to "parallax uncertainty" (or "parallax error") .

When reporting an absolute uncertainty as 0.5mL, one has assumed that the graduated cylinder is vertical
and the student is reading the meniscus position while staying near by the graduated cylinder.

If the liquid is dangerous, the volume measurements must be done inside a "protective room" and the
student cannot place his eye close to the graduated cylinder. In this situation, the parallax uncertainty
becomes larger; if, he reads somewhere between 254mL and 258mL, he would report the result of volume
measurement as 'V = (256.0 +/- 2.0) mL.

This example shows that the scale reading uncertainty depends on the measurement conditions.

In this type of measurement, it does make sense to accepts(without measuring) that the lower level of
liquid fits to zero and the volume is the same as the scale reading. But, if one uses a "mm scale" ruler to
measure the length of a muffler below car, one has to count the effect of reading uncertainty at both sides
of muffler and the reading uncertainty would be much more than 0.5mm. So, the reading uncertainty is
not always equal the half minimum scale; it depends on the conditions of measurement, too.

One defines the relative uncertainty "¢" as the portion(in %) of absolute uncertainty that corresponds
to the unit of measured parameter. So, for the measurement of liquid volume &, = Y «100%

Best
When the student stands near by the cylinder, the relative uncertainty is &= 0.5/255.5*100%= 0.2%
and when he stands outside the "protective room the relative uncertainty is &, = 2.0/256.0*100%= 0.8%

Lower is - value, higher is the precision of a measurement.
As g < & , there is a higher measurement precision when the student stands close by graduated cylinder.
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THREE CASES OF UNCERTAINTY

When dealing with uncertainty calculation of a given parameter one should start by distinguishing if

it is directly measured or it is calculated through some measured parameters by use of an expression.
Rule: For a direct measurement, one must repeat the same measurement several times. As a result,
there are two possible situations: or one gets always the same reading or one gets different readings.
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Fig.3 As a first step, one has to identify what case one is dealing with (A, B or C).

CASE "A™ - You measure several times a parameter and you get the same numerical reading.

Example_1: You measure five times the width of a table by a meter stick which smallest unit is 1cm and
read always 85cm. You may see that the reading is a little bit more or less than 85cm but you cannot read
a more precise number because you cannot be precise about what portion of 1cm is the quantity "a little
bit more or less”. So, you refer to “the half-scale rule” and take the absolute uncertainty equal to the
half of the smallest unit available used for measurement (1cm); i.e. AL= +0.5cm.

The result of measurement is reported as L= (85.0 = 0.5)cm; £=0.5/85.0%100=0.6% .

The interval of uncertainty for the measured parameter is (84.5; 85.5)cm.

-If you use a meter stick with smallest unit available 1mm, you would get a more precise result but even in
this case there is an uncertainty. Suppose that you will get always the reading L= 853mm. As there is
always a "parallax reading uncertainty” (due to eye position) on both sides, one may get easily* AL= +1,
+2, and even £3mm) depending on the measurement circumstances. The result of measurement would be
reported as L= (853 £1)mm or (853 £ 2)mm or (853 + 3)mm. In three cases the best estimation for the
table length is 853mm. If the absolute uncertainty of measurement is 4L= £ 1mm, than the true length is
inside the uncertainty interval (852, 854)mm and £;=1/853*100=0.12%;

if AL=+3mm, than the uncertainty interval (850, 856)mm and &3=3/853*100=0.35%.

-Assume that, by using the same meter stick, you measure the lengths of a calculator and a room and find
Lcaic= (14.0 £0.5)cm and Loom= (525.0 £0.5)cm. Both measurements have the same absolute uncertainty
AL= = 0.5¢m but the length of room is measured more precisely because the portion of uncertainty that
belongs to the unit of measured length, i.e. the relative uncertainty is smaller.

AL

In this case &% = * 100%
Best

So, onegets &, = %*100% ~357%~4%  and £ =02 100% = 0.095% ~ 0.1%.

room
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This means that the room length is measured much more precisely (about 40 times).

! Here one assumes no reading and no uncertainty for zero position. To get AL= +0.5mm one must apply special conditions
(like a optic device for reading...)



CASE "B" - You measure several times a parameter and you get different numerical readings.

Example_2: You drop an object from a window and expect (from theoretical calc.) it to hit ground after
2sec. To verify your expectation, you measure this time several times and record the following results;
1.99s, 2.01s, 1.89s, 2.05s 1.96s, 1.99s, 2.68s, 1.97s, 2.03s, 1.95s

Note: 5 measurements is a minimum reasonable number of repeated data readings, i.e. repeat five times
the same measurement. Due to time restrictions in lab sessions, one may accept until three repeated
measurements; A result based on only one or two different measurements values is not reliable.

As a first step one proceeds by: VERIFYING THE VALIDITY OF RECORDED DATA

The drawing of graphs during lab measurements is a practical way to estimate quickly:
a) Whether the measurements confirm the expected behaviour predicted by the physical model.
b) If any of recorded data is measured in wrong way and must be excluded from further treatments.

To check out the data, one includes them in a graph (fig.4). From this graph one can see that:
a) The fall time seems to be constant and very likely ~2s. So, in general, these are acceptable data.
b) Only the seventh measure is too far from the others results and this may be due to an abnormal
circumstance during its measurement. To eliminate any doubt, one excludes this value from the
following data analysis. The remaining nine data are enough for the following calculations.
1.99s, 2.01s, 1.89s, 2.05s, 1.96s, 1.99s, 1.97s, 2.03s, 1.95s.
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As a second step one proceeds by ORGANIZING RECORDED DATA IN A TABLE

Include all data in a table organized in such a way that some cells be ready to include the results of
uncertainty calculations. In this example, you are looking to estimate a single parameter "T", so you have
to predict (at least) three cells; one for its best estimation and two for its absolute&relative uncertainties.

Table 1
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1.99s | 2.01s | 1.89s | 2.05s | 1.96s | 1.99s | 1.97s | 2.03s | 1.95s

Then one follows with



CALCULATIONS OF UNCERTAINTIES

Keep in mind that the true value of parameter is unknown. So, one uses the recorded data to find an
estimation of the true value and the uncertainty of this estimation.

In case "B the best estimation of parameter is the average of recorded data and a good estimation of
absolute uncertainty is the mean deviation of recorded data.

So, for the data collected in experiment_2
b.1) The best estimation for falling time is equal to the average.

9
1 1
ty, = 52 t; = 5[1.99 + 2.01 + 189 +2.05 + 1.96 + 1.97 + 2.03 + 1.95] = 1.982 = 198

=1

b.2) One may get a good estimation for absolute uncertainty by using the spread of measured data
from their average value. The mean deviation gives the average of this spread.

At = =371t — tay| = 20, It; — 1.982] = 0.0353 = 0.04s
This way, one would say that the true value of fall time is inside the uncertainty interval (1.94, 2.02)sec
or between tmin =1. 94s and tmax = 2.02s with best estimation 1.98s. (after rounding off )

The result is reported as t = (1.98 +/- 0.04)sec

b.3) Another (statistically better) estimation of spread is the “standard? deviation” of data.

9 — 2 9 - 2
Based on our example data we get o(t) = \/E‘“(rf‘_f‘“’) = \/Zm(t;_i'%z) = 0.047s
After rounding off, the result is reported as t = (1.98 +/- 0.05)sec

For estimation of data spread, a larger interval of uncertainty means a more “conservative estimation”
but in the same time a more reliable estimation. That’s why the standard deviation is a better estimation
for the absolute uncertainty. Note that we get At = +/- 0.05s when using the standard deviation and
At = +/- 0.04s when using the mean deviation. Also, the relative uncertainty calculated from the
standard deviation is larger. In our example the relative uncertainty of measurements is

€= %t) * 100% = % *100% = 2.4% when using the standard deviation
and € = ? *100% = % *100% = 1.8% when using the mean deviation
Av .

The relative uncertainty 2.4% means lower precision of measurements but it is more reliable estimation.

Important: The absolute and relative uncertainty can never be zero.
-Assume that you repeat five times a given measurement and you read all times the same value of X.
So, by applying the rules of case “B” you may report Xpest = Xay =5X/5=X and 4Xp=0.

? The standard deviation can be calculated direct in Excel and in many calculators.



But this way you forget that, for each measurement, there is an uncertainty of type “4” and this means
that there is at least 4Xa = % (smallest scale unit). This example shows that, in general, the absolute
uncertainty of directly measured parameters should be calculated as AX = AXp + AXg

Note 1 : In those cases where 4Xg >> AXa one may simply take AX = AXg

In exemple_2, the time is measured with 2 decimals. This means that AXa= Ata= 0.01/2 = 0.005s
As AXg= Atg = 0.05s is ten times larger, one may neglect Az, = 0.005s and get At = A#z=0.05s.
But if Atg = 0.01s and A4z4= 0.005s one should not neglect Ata= 0.005s because it is 50% of Atg.
So, one must calculate the absolute uncertainty as A¢ = 0.01 +0.005 = 0.015s

Note 2: When measuring a quantum parameter " X " one records "a spectrum or a distribution of values"
for this parameter. This is a situation where AXg >> AXa and one takes AX = AXg= 6(X)

Note_3: In college labs one considers that a measurement has a good precision if the relative uncertainty

Is € < 10% . If the relative uncertainty is € > 10%, one may proceed by:
a) Cancelling any particular data “shifted too much from the best estimation value” ;
b) Increasing the number of recorded data by repeating more times the measurement;
c) Improving the measurement procedure.

CASE ""C" Estimation of Uncertainties for Calculated Parameters (Uncertainty propagation)

Very often, one uses the experimental data recorded for several parameters and a mathematical expression
to estimate the value of another parameter of interests (POI). As the measured parameters are estimated
with an uncertainty, it is clear that the estimation of POl with have uncertainty, too.

The calculation of best estimation for POI is based on the best estimations of measured parameters and
the formula that relates POl with measured parameters. The uncertainty of POl estimation is calculated
by using the Max_Min method. This method calculates the limits of uncertainty interval, POlpyin & POlmax
by using the formula relating POl with measured parameters and refers to the combination of their
limiting values in such a way that the result be the smallest or the largest possible.

Example_3a. To measure the volume of an irregular shape solid, one starts by filling a graduated cylinder
with water and records the volume reading, say V= 25.0mL. Next, one plunges the solid in water and
records the new the volume reading, say V, = 125.5mL and calculates the solid volume as Vsqjig = V2- V1
Those data mean that minimum scale mark is 1mL; so, V1= (25.0+/-0.5)mL and V,=(125.5+/-0.5)mL.
Then, one get Vpest-solig = 125.5 - 25.0 = 100.5mL; Vmax-solid = (125.5 + 0.5) - (25.0 - 0.5) =101.5mL,;
Vmin-solid = (125.5 - 0.5) - (25.0 + 0.5) =99.5mL; AV = (Vmax-solid - Vmin-solid)/2= (101.5 - 99.5) /2 =1.0mL
Finally, one get Vg = (100.5+/-1.0)mL and &% =1.0/100.5*100% =0.99% ~ 1%

Example_3b. To find the volume of a rectangular pool with constant depth, one uses a one meter stick to
measure its length L, width W and depth D. Next, one calculates the volume by formulaVV =L * W * D.
Assume that the measurement results are L = (25.5 £ 0.5)m, W = 12.0 £0.5m, D = 3.5 £0.5m. In this case
the best estimation for the volume is Vpest = 25.5*12.0*%3.5=1071.0 m?. This estimation of volume is
associated by an uncertainty calculated by Max-Min methods as follows

Vinin=Lmin*Winin*Dmin= 25*11.5*3 = 862.5m°> and  Vimax=Lmax*Wmax*Dmax= 26*12.5*4 = 1300.0m°
So, the uncertainty interval for the volume of pool is (862.5, 1300.0) and the absolute uncertainty is

AV=(Vinax-Vmin)I2 = (1300.0 - 862.5)/2= 218.7m* while the relative error is & = 120178'7 *100% = 20.42%

When applying the sig. figure rules, one gets Vpest =1100 m*; AV= 220m?; &, =20.%



Note_1: When applying the Max-Min method to calculate the uncertainty, one must pay attention
to the mathematical expression that relates POl to the measured parameters.

Example_4 - You measure the period of an oscillation and you use it to calculate the frequency (POI).
AsT=1/T, fpest = 1/ T4 the max-min method gives fmin =1/ Tmax and fmax =1/ Thin

Example 5 - If z=X-Y, Zpest=Xav—Yav aNd  Zyny =Xuax — Y @0 Zyy = Xun — Yivax -

Note 2. Use the best estimations of parameters in the expression to calculate the best estimation for POI.
If they are not available one may use POlnigqie as the best estimation for POI
POI MAX + POI MIN
2
Be aware though, that POl .. is not always equal to best estimation of POI. So, the pool volume
Vmigaie= (1300+862.5)/2 =1081.3m? is different from Vpest =1071.0 m3( but both are rounded off as 1100).

POl middle =

HOW TO PRESENT THE RESULT OF UNCERTAINTY CALCULATIONS?

You must provide the best estimation, the absolute uncertainty and the relative uncertainty. So, for the
last example, the result of uncertainty calculations should be presented as follows:
V= (1100 + 220) m*, €% = (220/1100)*100% = 20%

Note: Absolute uncertainties must be quoted to the same number of decimals as the best estimation.
The use of scientific notation helps to prevent confusion about the number of significant figures.

Example_6: If calculations generate, say A =(0.03456789 £ 0.00245678)m
This should be presented after being rounded off (leave 1 or 2 digits after decimal point):
A=(35+0.2)*10°m or A=(3.46+0.25) * 10”m

HOW TO CHECK WHETHER TWO QUANTITIES "A" and "B ARE EQUAL?

This question appears essentially in two situations:
1.0ne measures the same parameter by two different methods and want to verify if the results are equal.
2.0ne uses measurements to verify if a theoretical expression is right.

In the first case, one have to compare the estimations A + 44 and B =+ AB for the " two parameters ". The
second case can be transformed easily to the first case by noting the measurement as A and the expression
result as B. Then, the procedure is the same.
Example: One wants to verify if the thins lens equation 1/p + 1/q = 1/f. So, one notes 1/p + 1/q=A
and 1/f = B, records data for A and B, draws their uncertainty intervals and applies the following rule:
Rule: One considers that the quantities A and B are equal® if their uncertainty intervals overlap.
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® They should be expressed in the same unit, for sure.



WORK WITH GRAPHS

One uses the graphs to check the theoretical expressions or to find the values of physical parameters.

Example_7; Theoretical study of simple pendulum oscillations gives the expression T = 2z./L/g for its

period and one wants to verify this experimentally. To simplify the procedure, one prefers to get a linear

relationship between two parameters one can measure; in this case period T and length L. S
2

For this, one squares both sides of theoretical expression, get T? = R L and by noting T?=y, L = X
g

gets the linear expression y = a*x where a = 4x’/g.
At first, one has to verify experimentally if there is a linear relation between T? and L. Note that if this is
verified, one can use the experimental value of “a” to calculate the free fall constant value “g = 4n°/a”.

- Assume that after measuring the period for a given pendulum length five times, calculated the best values
and uncertainties for y(=T?) and repeated this for a set of different values of length x(L=1,...,6m), one gets
the data shown in table No 2. At first, one draws the graph of best data (X,Ypest). One can see that they are
aligned on a straight line, as expected. Next, one uses Excel to find the best linear fitting line for these
data and makes this line to pass from (x = 0, y = 0) because this is predicted from the theoretical formula.
One gets a straight line with ayet = 4.065. Using the theoretical formula one calculates the best estimation
for Quest = 4n°/aa, = 47°14.065= 9.70 which is not far from the expected value 9.8. Next, one adds the
uncertainties in the graph(that appear as error bars) and draws the best linear fitting with max./min. slope
that pass by origin. From those graphs one gets amin= 3.635 and amax= 4.202.

S0, Omin = 4n/amax= 41°/4.202=9.38  and  Qmax = 4n°/amin= 4n*/3.635= 10.85

Table_2
AY Max. Min.
X |Y(best)| (+/-) |Ymin| Ymax Slope Slope
1 4 15 25 5.5 4.202 3.635
2 8.3 1.8 6.5 10.1
3 11.8 1.3 105 13.1P1(1;1.5) |P1(1;5.5)
4 17| 1.6 15.4] 18.6|P2 (6; 25.5)|P2 (6; 21.5)
5 21 1.1 19.9 22.1]
6 23.5 2 21.5 25.5
25
20
15 ¢ Average
® Max. Slope
10 Y = 3.6351X _
Min. slope
5 Fig.6
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This way, by using the graphs one:

1- has proved experimentally that the theoretical relation between T and L is right.

2- finds the best estimation for g-value as 9.70 m/s*

3- finds the interval of uncertainty for the measured g-value (9.38, 10.85)m/s?

3- finds the absolute uncertainty of the measurement A4g =(10.85-9.38)/2=0.735m/s*

4- finds the relative uncertainty of the measurement & = (4g/Qpest)*100%=(0.735/9.70)*100=7.6%
and can confirm that the measurements have an good precision because 7.6% < 10%.

5- can confirm that the measurements are accurate because the uncertainty interval (9.38, 10.85)

does include the officially accepted value * g = 9.8m/s* "

ABOUT THE ACCURACY AND PRECISION

- Understanding the difference between accuracy and precision by use of hits distribution in a Dart’s play.

* *
*
x5 % % % % 221 "
" * L *
* ¥
* % e ¥
* #*
Accurate Accurate Inaccurate Inaccurate
Good precision Low precision Good precision Low precision

- As a rule, before using a device (or method) for measurements, one should make sure that the device
(or method) produces accurate results in the range of expected values for the measured parameter. This
is an obligatory step known as the calibration procedure. During a calibration procedure one records a set
of data for a known parameter and makes sure that the result of measurements is accurate. One considers
that a calibrated device (or method) produces accurate results inside calibration range any time it is used.

In principle, the result of an experiment is accurate if the “best estimation” is equal to the * officially
accepted value”. In practice one considers that a measurement is “accurate” if the ” officially accepted
value” falls inside the interval of uncertainty of measured parameter; otherwise the result is inaccurate.

The quantity €00y = (lx”e;‘_x—"”‘”“’l) +100% (often ambiguously named as error) gives the relative
official

shift of best estimation from the officially accepted value Xosficiar -
One say that that the measurement is accurate if gxccy_> & and the accuracy is higher when gxccy 1S

smaller. But, the measurement is inaccurate if &,..._> & (relative uncertainty of measurement ).
. . A
Remember that relative uncertainty € = (X

X ) *100% is different from &;ccy.

best

Note: For a big number of measured data and accurate measurement, the best estimation should fit to
the "'official *value of parameter and &,., should be practically zero. Meanwhile the relative
uncertainty & tents to a fixed value different from zero. Actually, ¢ can never be equal to zero.




