BRIEF SURVEY OF UNCERTAINITY IN PHYSICS LABS

<u>First Step</u> **VERIFYING THE VALIDITY OF RECORDED DATA**

The drawing of graphs during lab measurements is practical way to estimate quickly:

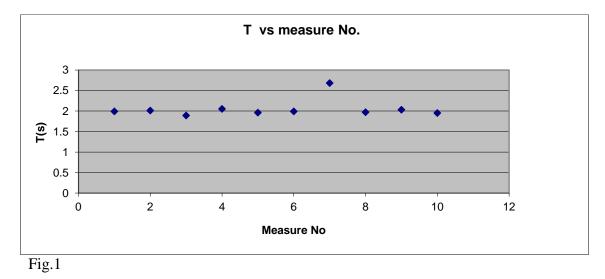
- a) Whether the measurements confirm the expected behaviour predicted by physics model.
- b) If any of recorded data is measured in wrong way and must be excluded from further data treatments.

Example_1: We drop an object from a window and we expect it to hit ground after 2sec. To verify our expectation, we *measure* this *time* several times and record the following results; 1.99s, 2.01s, 1.89s, 2.05s 1.96s, 1.99s, 2.68s, 1.97s, 2.03s, 1.95s

(Note: *3-5 measurements* is a *minimum acceptable number of data* for estimating a parameter, i.e. repeat the measurement 3-5 times. The estimation based on 1 or 2 data is not reliable.)

To check out those data we include them in a graph (fig.1). From this graph we can see that:

- a) The fall time seems to be *constant* and very likely ~2s. So, in general, we have acceptable data.
- b) Only the seventh measure is too far from the others results and this may be due to an abnormal circumstance during its measurement. To eliminate any doubt, we *exclude* this value from the following data analysis. We have enough other data to work with. Our remaining data are: 1.99s, 2.01s, 1.89s, 2.05s, 1.96s, 1.99s, 1.97s, 2.03s, 1.95s.



Second step ORGANIZING RECORDED DATA IN A TABLE

Include all data in a table organized in such a way that some cells be ready to include the uncertainty calculation results. In our example, we are looking to estimate a single parameter "**T**", so we have to predict (*at least*) two cells for its average and its uncertainty.

Table_	1
--------	---

-	T_1	T_2	T ₂	T ₄	T ₅	Τ ₆	T_7	Т∘	Τo	Tav	ΔT
	1.99s	2.01s	1.89s	2.05s	1.96s	1.99s	1.97s	2.03s	1.95s	147	

Third step

The *true value* of parameter is unknown. We use the *recorded data* to find an <u>estimation</u> of the *true value* and the <u>uncertainty</u> of this estimation.

There are three particular situations for uncertainty of estimations.

A] - We measure several times a parameter and we get always the same numerical value.

Example_2: We measure the length of a table three times and we get L=85cm and *a little bit more or less*. This happens because the smallest unit of the meter stick is **1cm** and we <u>cannot be precise</u> about what portion of 1cm is the quantity "a little bit more or less". In such situations we use "the half-scale rule" i.e.; <u>the uncertainty is equal to the half of the smallest unit available used for measurement</u>. In our example $\Delta L=\pm 0.5cm$ and the result of measurement is reported as $L=(85.0 \pm 0.5)cm$.

-If we use a meter stick with smallest unit available 1mm, we are going to have a more precise result but even in this case there is an uncertainty. Suppose that we get always the length L=853mm. Being aware that there is always a parallax error (eye position) on both sides reading, one may get $\Delta L = \pm 0.5$, ± 1 and even $\pm 2mm$) depending on the measurement circumstances. The result of measurement is reported as $L=(853.0 \pm 0.5)mm$ or $(853 \pm 1)mm$ or $(853 \pm 2)mm$. Our <u>best estimation</u> for the table length is 853mm. Also, our measurements show that the true length is between 852 and 854mm. If the absolute uncertainty of estimation is $\Delta L=\pm 1mm$, than the <u>uncertainty interval</u> is (852, 854)mm.

-Let's suppose that using the same meter stick, we measure the length of a calculator and a room and find $L_{calc} = (14.0 \pm 0.5)cm$ and $L_{room} = (525.0 \pm 0.5)cm$. In the two cases we have the same absolute uncertainty $\Delta L = \pm 0.5cm$ but we are conscious that the length of room is measured more precisely. The precision of a measurement is estimated by the uncertainty portion that belongs to the unit of

measurement quantity. Actually, it is estimated by the **relative error** $\varepsilon = \frac{\Delta L}{\bar{L}} * 100\%$

-Note that *smaller relative error* means *higher precision* of measurement. In our length measurement, 0.5 * 1000 = 2.570 and 0.5 * 1000 = 0.0050. We see that the mean

we have $\varepsilon_{calc} = \frac{0.5}{14} * 100\% = 3.57\%$ and $\varepsilon_{room} = \frac{0.5}{525} * 100\% = 0.095\%$. We see that the room

length is measured much more precisely (about 38 times).

- *Note*: Don't mix the *precision* with *accuracy*. A measurement is *accurate* if *uncertainty interval* contains an *expected* (known by literature) *value* and *non accurate* if it does not contain it.
- *B]* We <u>measure</u> several times a parameter and we get always different numerical values. In this case, one takes <u>average</u> as the **best estimation** and <u>mean deviation</u> as <u>absolute uncertainty</u>.

Example: For data collected *in experiment_1*

b.1) The best estimation for falling time is the average of measured data .

$$\bar{T} = \frac{1}{n} \sum_{i=1}^{n} T_i = \frac{1}{9} \sum_{i=1}^{9} T_i = \frac{1}{9} [1.99 + 2.01 + 1.89 + 2.05 + 1.96 + 1.99 + 1.97 + 2.03 + 1.95] = 1.982s \quad (2)$$

b.2) One uses the *spread of measured data* to get un **estimation** for **absolute uncertainty**. <u>A first way to estimate the spread</u> is by use of <u>mean deviation</u> i.e. "average distance" of data from their average value. In the case of our example

we get
$$\Delta T = \frac{1}{n} \sum_{i=1}^{n} \left| T_i - \overline{T} \right| = \frac{1}{9} \sum_{i=1}^{9} \left| T_i - 1.982 \right| = 0.0353$$
(3)

(1)

Now we can say that the **true value** of fall time is inside the **uncertainty interval** (1.947, 2.017)sec or between $T_{max} = 2.017s$ and $T_{min} = 1.947s$ with **best estimation** 1.982s. Taking in account the rules on significant figures and rounding off we get $T_{Best} = 1.98sec$ and $\Delta T = 0.04sec$ and

The result is reported as
$$T = (1.98 + -0.04)sec$$
 (4)

Another (statistically better) estimation of spread is the "standard¹ deviation" of data.

$$\sigma T = \sqrt{\frac{\sum_{i=1}^{n} \left(T_{i} - \overline{T}\right)^{2}}{n-1}} = \sqrt{\frac{\sum_{i=1}^{9} \P_{i} - 1.982^{2}}{8}} = 0.047s.$$
(5)
The result is reported as $T = (1.98 + -0.05)sec$ (6)

The result is reported as T = (1.98 + - 0.05)sec

b.3) For spread estimation, a larger interval of uncertainty means a more "conservative estimation" but in the same time a *more reliable estimation*. That's why the *standard deviation* is a better estimation for the *absolute uncertainty*. Note that we get $\Delta T = +/-0.05s$ when using the *standard deviation* and $\Delta T = +/-0.04s$ when using the *mean deviation*. Also, the relative error (or relative uncertainty) calculated from the standard deviation is bigger. In our example the relative uncertainty of measurements is

$$\varepsilon = \frac{\sigma T}{\bar{T}} * 100\% = \frac{0.047}{1.982} * 100\% = 2.37\% \qquad \text{when using the standard deviation}$$

and $\varepsilon = \frac{\Delta T}{\bar{T}} * 100\% = \frac{0.035}{1.982} * 100\% = 1.81\% \qquad \text{when using the mean deviation}$

Important: The absolute and relative uncertainty can never be zero.

Assume that you **repeat** 5 times a given measurement and you read all times the same value X. So, by applying the rules of case "b" you may rapport $X_{\text{best}} = X_{Av} = 5X/5 = X$ and $\Delta X_b = 0$. But here you deal with a case "a" and this means that there is a $\Delta X_a(\neq 0) = \frac{1}{2}$ (smallest unit of measurement scale). This example shows that, when calculating the absolute uncertainty, one should take into account the precise expression

$$\Delta X = \Delta X_a + \Delta X_b \tag{7}$$

Note that in those cases where $\Delta X_b >> \Delta X_a$ one may simply disregards ΔX_a .

Exemple: In exemple_1 the time is measured with 2 decimals. This means that $\Delta X_a = 1/2(0.01) = 0.005s$ Meanwhile (from 6) $\Delta X_b = 0.05s$ which is ten times bigger than ΔX_a . In this case one <u>may</u> neglect ΔX_a . But if ΔX_b were 0.02s and $\Delta X_a = 0.005s$ one cannot neglect $\Delta X_a = 0.05s$ because it is 25% of ΔX_b . In this case one must use the expression (7) to calculate the absolute uncertainty and $\Delta X = 0.02 + 0.005 = 0.025s$

Note: You will consider that a measurement has a *good precision* if the *relative uncertainty* $\varepsilon < 10\%$.

- If the relative uncertainty is $\varepsilon > 10\%$, you may proceed by:
- a) *Cancelling* any particular data "*shifted too much from the average value*";
- b) *Increasing* the number of data by repeating more times the measurement;
- c) *Improving* the measurement procedure.

Based on our example data we get

The standard deviation can be calculated direct in Excel and in many calculators.

C] Estimation of Uncertainties for Calculated Quantities (Uncertainty propagation)

Very often, we use the experimental data recorded for some parameters and a mathematical expression to estimate the value of a given parameter of interests (POI). As we estimate the *measured parameters* with a certain *uncertainty*, it is clear that the estimation of POI with have some uncertainty, too. Actually, the calculation of *best estimation* for POI is based on the *best estimations of measured parameters* and the formula that relates POI with measured parameters. Meanwhile, the uncertainty of POI estimation is calculated by using the *Max_Min* method. This method calculates the limits of uncertainty interval, *POI_{min} and POI_{max}* by using the formula relating POI with other parameters and the combination of their limiting values in such a way that the result be the smallest or the largest possible.

Example. To find the volume of a rectangular pool with constant depth, we measure its length L, its width W and its depth D by a meter stick. Then, we calculate the volume by using the formula V=L*W*D. Assume that our measurement results are $L = (25.5 \pm 0.5)m$, $W = 12.0 \pm 0.5m$, $D = 3.5 \pm 0.5m$

In this case the **best estimation** for the volume is $V_{\text{best}} = 25.5*12.0*3.5 = 1071.0 \text{ m}^3$. This estimation of volume is associated by an uncertainty calculated by *Max-Min methods* as follows

 $V_{min} = L_{min} * W_{min} * D_{min} = 25 * 11.5 * 3 = 862.5 m^3 \text{ and } V_{max} = L_{max} * W_{max} * D_{max} = 26 * 12.5 * 4 = 1300.0 m^3$

So, the *uncertainty interval* for volume is (862.5, 1300.0) and the *absolute uncertainty is*

 $\Delta V = (V_{\text{max}} - V_{\text{min}})/2 = (1300.0 - 862.5)/2 = 218.7 \text{m3} \text{ while the relative error is } \varepsilon_V = \frac{218.7}{1071.0} * 100\% = 20.42\%$

Note_1: When applying the Max-Min method to calculate the uncertainty, one must pay attention to the mathematical expression that relates POI to measured parameters.

Examples: - You measure the period of an oscillation and you use it to calculate the frequency (POI). As f = 1/T, $f_{av} = 1/T_{av}$ the max-min method gives $f_{min}=1/T_{max}$ and $f_{max}=1/T_{min}$ - If z = x - y, $z_{av} = x_{av} - y_{av}$ and $z_{MAX} = x_{MAX} - y_{MIN}$ and $z_{MIN} = x_{MIN} - y_{MAX}$.

Note_2. Use the *best estimations of parameters in the expression* to calculate the *best estimation for POI. If they are missing* one may use POI_{middle} as the best estimation for POI

$$POI_{middle} = \frac{POI_{MAX} + POI_{MIN}}{2}$$
(8)

Be aware though, that POI_{middle} is not always equal to **POI** best estimation. So, for the pool volume $V_{middle} = (1300+862.5)/2 = 1081.25m3$ which is different from $V_{best} = 1071.0 \text{ m}^3$

<u>How to present the result of uncertainty calculations</u>? You must provide the **best estimation**, the **absolute uncertainty** and the **relative uncertainty**. So, for the last example, the result of uncertainty calculations should be presented as follows: V = (1071.0 ± 218.7) m³, $\varepsilon = (218/1071)*100\% = 20.42\%$

Note: Absolute uncertainties must be *quoted* to the <u>same number of decimals</u> as the <u>best estimation</u>. The use of *scientific notation* helps to prevent confusion about the number of significant figures.

Example: If calculations generate, say $A = (0.03456789 \pm 0.00245678.)m$ This should be presented after being rounded off (leave 1,2 or 3 digits after decimal point):

A =
$$(3.5 \pm 0.2) * 10^{-2}$$
m or A = $(3.46 \pm 0.25) * 10^{-2}$ m

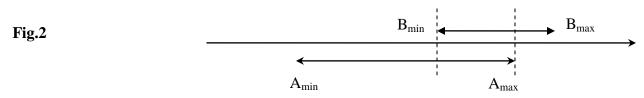
HOW TO CHECK WHETHER TWO QUANTITIES ARE EQUAL?

This question appears essentially in two situations:

1.We measure the *same parameter* by two *different methods* and want to verify if the results are equal. 2.We use measurements to *verify* if *a theoretical expression* is right.

In the first case, we have to compare the estimations $A \pm \Delta A$ and $B \pm \Delta B$ of the "two parameters". The second case can be transformed easily to the first case by noting the left side of expression A and the right side of expression B. Then, the procedure is the same. *Example*: We want to verify if the thins lens equation 1/p + 1/q = 1/f is right. For this we note 1/p + 1/q = A and 1/f = B

Rule: We will consider that the quantities A and B are *equal*² if their *uncertainty intervals overlap*.



WORK WITH GRAPHS

We use graphs to *check the theoretical expressions* or to *find the values* of physical quantities.

Example; We find theoretically that the oscillation period of a *simple pendulum* is $T = 2\pi \sqrt{L/g}$ and we wants to verify it experimentally. For this, as a first step, we prefer to get a linear relationship between two quantities we can measure; in our case period T and length L. For this we square the two sides of the

relation $T^2 = \frac{4\pi^2}{g} * L$ pose $T^2 = y$, L = x and get the <u>linear expression</u> y = a * x where $a = 4\pi^2/g$. So, we have to verify experimentally if there is such a relation between T^2 and L. Note that if this is

so, we have to verify experimentally if there is such a relation between I and L. Note that if this is verified we can use the experimental value of "a" to calculate the free fall constant value " $g = 4\pi^2/a$ ".

- Assume that after measuring the period for a given pendulum length several times, calculated the *average values* and *uncertainties* for $y(=T^2)$ and repeated this for a set of different values of length x(L=1,...,6m), we get the data shown in table No 1. At first, we graph the average data (X_{av}, Y_{av}) . We see that they are aligned on a straight line, as expected. Then, we use Excel to find the best linear fitting for our data and we ask this line to pass from (x = 0, y = 0) because this is predicted from the theoretical formula. We get a straight line with $a_{av} = 4.065$. Using our theoretical formula we calculate the estimation for $g_{av} = 4\pi^2/a_{av} = 4\pi^2/4.065 = 9.70$ which is not far from expected value 9.8. Next, we add the uncertainties in the graph and draw the best linear fitting with maximum /minimum slope that pass by origin. From the graphs we get $a_{min} = 3.635/a_{max} = 4.202$. So, $g_{min} = 4\pi^2/a_{max} = 4\pi^2/4.202 = 9.38$ and $g_{max} = 4\pi^2/a_{min} = 4\pi^2/3.635 = 10.85$

Table_2

х	Y(av.)	∆Y (+/-)	Ymin	Ymax	Max. Slope	Min. Slope	
1	4	1.5	2.5	5.5	4.202	3.635	
2	8.3	1.8	6.5	10.1			
3	11.8	1.3	10.5	13.1	P1 (1; 1.5)	P1 (1; 5.5)	
4	17	1.6	15.4	18.6	P2 (6; 25.5)	P2 (6; 21.5)	
5	21	1.1	19.9	22.1			
6	23.5	2	21.5	25.5			

This way, by using the graphs we:

- 1- have *proved experimentally* that *our relation* between *T* and *L* is right.
- 2- find out that our measurements are *accurate* because the *uncertainty interval* (9.38, 10.85) for "g" does *include the officially accepted value* $g = 9.8m/s^2$
- 3-find the *absolute error* $\Delta g = (10.85 \cdot 9.38)/2 = 0.735 \text{m/s}^2$ The relative error is $\varepsilon = (0.735/9.70)*100\% = 7.6\%$ which means a acceptable (< 10%) *precision of measurement*.

² They should be expressed in the same unit, for sure.

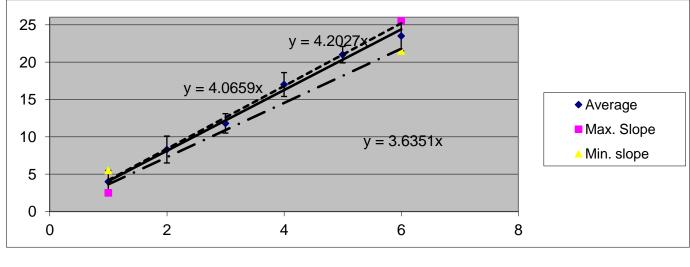
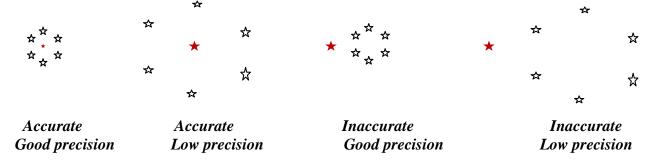


Fig.3

ABOUT THE ACCURACY AND PRECISION

- Understanding **accuracy** and **precision** by use of hits distribution in a Dart's play.



- As a rule, before using a method (or device) for measurements, one should verify that the method produces *accurate results* in the range of expected values for the parameter under study. This is an obligatory step in research and industry and it is widely known as the *calibration procedure*. During a calibration procedure one records a set of data and makes sure that the *result is accurate*.

In principle, the *result of experiment is accurate* if the "average of data" fits to the" officially accepted value". We will consider that our experiment is "enough accurate" if the" officially accepted value" falls *inside* the interval of uncertainty of measured parameter; otherwise the result is inaccurate.

The quantity $\varepsilon_{accu} = \frac{|C_{Av} - C_{off}|}{C_{off}} x100 \%$ (often ambiguously named as error) gives the relative shift of average from the officially accepted value $C_{official}$. It is clear that the accuracy is higher when ε_{accu} is smaller. But, the measurement is <u>inaccurate if $\varepsilon_{accu} > \varepsilon$ </u> (relative uncertainty of measurement). Remember that relative uncertainty $\varepsilon = \frac{\Delta C}{C_{Av}} x100\%$ is different from ε_{accu} . Note: For an *a big number of measured data* and *accurate measurement*, the average should fit to the

Note: For an <u>a big number of measured data</u> and <u>accurate measurement</u>, the average should fit to the expected value of parameter and ε_{accu} should be practically zero. Meanwhile the relative error ε tents to a fixed value different from zero. Actually, ε can never be equal to zero.