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BRIEF SURVEY OF UNCERTAINITY IN PHYSICS LABS 
 
 
First Step                   VERIFYING THE VALIDITY OF RECORDED DATA 
 
The drawing of graphs during lab measurements is practical way to estimate quickly: 

a) Whether the measurements confirm the expected behaviour predicted by physics model 
b) If any of recorded data is measured in wrong way and must be excluded from further data 

treatments.   
 

Example_1: We drop an object from a window and we expect it to hit ground after 2sec. To verify our 
prediction, we measure this time several times and record the following results;  
                  1.99s, 2.01s, 1.89s, 2.05s 1.96s, 1.99s, 2.68s, 1.97s, 2.03s, 1.95s 
                                                        (Note: 3-5 measurements is a minimum acceptable number of data 
                                                                    for estimating a parameter, i.e. repeat the  measurement 3-5 times) 
 
To check out those data we include them in a graph (fig.1). From this graph we can see that: 

a) The fall time seems to be constant and very likely ~2s. So, in general, we have acceptable data. 
b) The seventh measure seems too far from the others results and this might be due to an abnormal 

          circumstance during its measurement. To eliminate any doubt, we exclude this value from the  
          following data analysis. We have enough other data to work with. Our remaining data are:  
          1.99s, 2.01s, 1.89s, 2.05s, 1.96s, 1.99s, 1.97s, 2.03s, 1.95s. .  
 

   
  Fig.1 
 
 
Second step      ORGANIZING RECORDED DATA IN A TABLE 
 
Include all data in a table organized in such a way that some cells be ready to include the uncertainty 
calculation results. In our example, we are looking to estimate a single parameter “T”, so we have to 
predict (at least) two cells for its average and its uncertainty. 
 
                Table_1 

T1 T2 T3 T4 T5 T6 T7 T8 T9 Tav ∆T 
1.99s 2.01s 1.89s 2.05s 1.96s 1.99s 1.97s 2.03s 1.95s   
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 Third step                               CALCULATIONS OF UNCERTAINTIES  
 
The true value of parameter is unknown. We use the recorded data to find an estimation of the true value 
and the uncertainty of this estimation. 
 
                                   There are three particular situations for uncertainty estimations. 
 
A] - We measure several times a parameter and we get always the same numerical value.  

Example_2: We measure the length of a table three times and we get L= 85cm and a little bit more or 
less. This happens because the smallest unit of the meter stick is 1cm and we cannot be precise about 
what portion of 1cm is the quantity “a little bit more or less”. In such situations we use “the half-scale 
rule” i.e.;  the uncertainty is equal to the half of the smallest unit available used for measurement. 
In our example ∆L= ±0.5cm and the result of measurement is reported as L= (85.0 ± 0.5)cm. 
 
-If we use a meter stick with smallest unit available 1mm, we are going to have a more precise result 
but even in this case there is an uncertainty. Suppose that we get always the length L= 853mm. Being 
aware that there is always a parallax error (eye position) on both sides reading, one may get ∆L= ±0.5, 
±1 and even ±2mm) depending on the measurement circumstances. The result of measurement is 
reported as L= (853.0 ±0.5)mm or (853 ± 1)mm or (853 ± 2)mm . Our best estimation for the table 
length is 853mm. Also, our measurements show that the true length is between 852 and 854mm. If the 
absolute uncertainty of estimation is ∆L= ± 1mm, than the uncertainty interval is (852, 854)mm.   
 
-Let’s suppose that using the same meter stick, we measure the length of a calculator and a room and 
find Lcalc= (14.0 ±0.5)cm and Lroom= (525.0 ±0.5)cm. In the two cases we have the same absolute 
uncertainty ∆L= ± 0.5cm but we are conscious that the length of room is measured more precisely. 
The precision of a measurement is estimated by the uncertainty portion that belongs to the unit of 

measurement quantity. Actually, it is estimated by the relative error            %100*−

∆
=

L

Lε       (1) 

-Note that smaller relative error means higher precision of measurement. In our length measurement, 

we have %57.3%100*
14

5.0
==calcε   and %095.0%100*

525
5.0

==roomε . We see that the room 

length is measured much more precisely (about 38 times).  
     Note: Don’t mix the precision with accuracy. A measurement is accurate if uncertainty interval  
                contains an expected (known by literature) value and non accurate if it does not contain it.  
 
B]   We measure several times a parameter and we get always different numerical values. 
 
      Example: For data collected in experiment_1 we have to calculate the average value and the absolute 
                      uncertainty based on statistical methods. 

 
     b.1) We estimate the value of parameter by the average of measured data . In case of our first example  
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    b.2)  To estimate how far from the average can be the true value we use the spread of measured data.   
             A first way to estimate the spread is by use of mean deviation i.e. “average distance” of data  
             from their average value. In case of our example 
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         Now we can say that the true value of fall time is inside the uncertainty interval  (1.947, 2.017)sec  
         or between Tmax = 2.017s and Tmin =1.947s with average value 1.982s. Taking in account the rules on  
         significant figures and rounding off we get  TAv= 1.98sec and ∆T= 0.04sec and  
 
                                                                  The result is reported as         T = (1.98 +/- 0.04)sec         (4) 
       
           Another (statistically better) estimation of spread is the “standard1 deviation” of data.  
 

       Based on our example data we get     
( )

s
T

n

TT
T i

i

n

i
i

047.0
8

982.1

1

9

1

2

1

2

=
−

=
−

⎟
⎠
⎞

⎜
⎝
⎛ −

=
∑∑
==

−

σ .           (5)  

                                                                    The result is reported as         T = (1.98 +/- 0.05)sec         (6) 
 
b.3) For spread estimation, a larger interval of uncertainty means a more “conservative estimation”  
       but  in the same time a more reliable estimation. That’s why the standard deviation is a better  
       estimation for the absolute uncertainty. Note that we get ∆T= +/- 0.05s   when using the standard  
       deviation   and  ∆T= +/- 0.04s   when using the mean deviation. Also, the relative error (or relative  
       uncertainty) calculated from the standard deviation  is bigger. In our example the relative  
       uncertainty of measurements is 

                   %37.2%100*
982.1
047.0%100* === −

T

Tσε             when using the standard deviation    

            and %81.1%100*
982.1
035.0%100* ==

∆
= −

T

Tε                when using the mean deviation   

Important: The absolute and relative uncertainty can never be zero. 
Assume that you repeat 5 times a given measurement and you read all times the same value X. So, by  
applying the rules of case “b” you may rapport  XAv = 5X/5= X and ∆Xb= 0. But here you deal with a  
case “a” and this means that there is a ∆Xa( ≠0) = ½(smallest unit of measurement scale).  This example shows 
that, when calculating the absolute uncertainty, one should take into account the precise expression  
 
                                                             ∆X =  ∆Xa + ∆Xb                                                                     (7) 
     
              Note that in those cases where  ∆Xb  >> ∆Xa  one may simply disregards ∆Xa. 
Exemple: In exemple_1 the time is measured with 2 decimals. This means that ∆Xa= 1/2(0.01) = 0.005s 
Meanwhile ( from 6) ∆Xb= 0.05s which is ten times bigger than ∆Xa. In this case one may neglect ∆Xa. 
But if ∆Xb were 0.02s and ∆Xa= 0.005s one cannot neglect ∆Xa= 0.05s because it is 25% of ∆Xb. In this 
case one must use the expression (7) to calculate the absolute uncertainty and ∆X= 0.02 +0.005=0.025s 
 
 Note: You will consider that a measurement has a good precision if the relative uncertainty ε <10% .  
            If the relative uncertainty is ε > 10%, you may proceed by: 

a) Cancelling any particular data “shifted too much from the average value” ; 
b) Increasing the number of data by repeating more times the measurement; 
c) Improving the measurement procedure.   

                                                 
1 The standard deviation can be calculated direct in Excel and in many calculators. 
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C]   Estimation of Uncertainties for Calculated Quantities (Uncertainty propagation) 
 
Very often, we use the experimental data recorded for some parameters and a mathematical expression to 
estimate the value of a given parameter of interests (POI). As we estimate the measured parameters with  
a certain uncertainty, it is clear that the estimation of POI with have some uncertainty, too. 
Actually, the calculation of best estimation for POI is based on the best estimations of measured 
parameters and the formula that relates POI with measured parameters.  Meanwhile, the uncertainty of 
POI estimation is calculated by using the Max_Min method. This method calculates the limits of 
uncertainty interval, POImin and  POImax  by using the formula relating POI with other parameters and the 
combination of their limiting values in such a way that the result be the smallest or the largest possible.  
 
Example. To find the volume of a rectangular pool with constant depth , we measure its length, its width 
and its depth and then, we calculate the volume by using the formula V=L*W*D. Assume that our 
measurement results are L = (25.5 ± 0.5)m, W = 12.0 ±0.5m, D = 3.5 ±0.5m 
 
In this case the best estimation for the volume is  Vbest = 25.5*12.0*3.5=1071.0 m3. This estimation of 
volume is associated by an uncertainty calculated by Max-Min methods as follows 
 
Vmin=Lmin*Wmin*Dmin= 25*11.5*3 = 862.5m3     and     Vmax=Lmax*Wmax*Dmax= 26*12.5*4 = 1300.0m3   
 
So, the uncertainty interval for volume is (862.5, 1300.0) and the absolute uncertainty is  

 ∆V= (Vmax-Vmin)/2 = (1300.0 - 862.5)/2= 218.7m3 while the relative error is %42.20%100*
0.1071
7.218

==Vε  

 
Note_1: When applying the Max-Min method to calculate the uncertainty, one must pay attention 
               to the mathematical expression that relates POI to measured parameters. 
 
 Examples:  -   You measure the period of an oscillation and you use it to calculate the frequency (POI). 
                         As f = 1/ T,  fav = 1/ Tav the max-min method gives  fmin=1 / Tmax  and  fmax =1 / Tmin 

- If   z = x – y, zav = xav –yav and    MINMAXMAX yxz −=   and MAXMINMIN yxz −= . 
 
Note_2.   Use the best estimations of parameters in the expression to calculate the best estimation for POI. 
If they are missing one may use POImiddle as the best estimation for POI    

                                                            2
MINMAX

middle
POIPOI

POI
+

=                                             (8)  

Be aware though, that POImiddle is not always equal to POI best estimation. 
So, for the pool volume Vmiddle=  (1300+862.5)/2 =1081.25m3 which is different from Vbest =1071.0 m3 
 
How to present the result of uncertainty calculations? You must provide the best estimation, the 
absolute uncertainty and the relative uncertainty. So, for the last example, the result of uncertainty 
calculations  should be presented as follows:  V=  (1071.0 ± 218.7) m3 , ε =(218/1071)*100%= 20.42% 
 
Note: Uncertainties must be quoted to the same number of decimal digits  as the best estimation.  The 
use of scientific notation helps to prevent confusion about the number of significant figures.  
 
Example: If calculations generate, say                                 A = (0.03456789 ± 0.00245678.)m 
 This should be presented after being rounded off (leave 1,2 or 3 digits after decimal point):                                      
 
              A = (3.5 ± 0.2) * 10-2m  or  A = (3.46 ± 0.25) * 10-2m 
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HOW TO CHECK WHETHER TWO QUANTITIES ARE EQUAL? 
 
This question appears essentially in two situations: 
  1.We measure the same parameter by two different methods and want to verify if the results are equal. 
  2.We use measurements to verify if a theoretical expression is right. 
In the first case, we have to compare the estimations A ± ∆A and B ± ∆B of  the “two parameters”. The 
second case can be transformed easily to the first case by noting the left side of expression A and the right 
side of expression B. Then, the procedure is the same. Example: We want to verify if the thins lens 
equation  1/p + 1/q = 1/f  is right. For this we note 1/p  + 1/q = A  and  1/f = B  
          Rule: We will consider that the quantities A and B are equal2 if their uncertainty intervals overlap.  
 
 
                  Fig.2 
                       
 
 
                  WORK WITH GRAPHS 
 
We use graphs to check the theoretical expressions or to find the values of physical quantities. 
 Example; We find theoretically that the oscillation period of a simple pendulum is gLT /2π=  and we 
wants to verify it experimentally. For this, as a first step, we prefer to get a linear relationship between two 
quantities we can measure; in our case period T and length L. For this we square the two sides of the 

relation  L
g

T *4 2
2 π
=   pose T2 = y, L = x  and  get the linear expression   y = a*x  where a = 4π2/g. 

So, we have to verify experimentally if there is such a relation between T2 and L. Note that if this is 
verified we can use the experimental value of a to calculate the free fall constant value “g = 4π2/a”. 
 
- Assume that after measuring the period for a given pendulum length several times, calculated the average 
values and uncertainties for y(=T2) and repeated this for a set of different values of length x(L=1,...,6m), 
we get the data shown in table No 1. At first, we graph the average data. We see that they are aligned on a 
straight line, as expected. Then, we use Excel to find the best linear fitting for our data and we ask this line 
to pass from (x = 0, y = 0) because this is predicted from the theoretical formula. We get a straight line 
with aav = 4.065. Using our theoretical formula we calculate the estimation for  gav = 4π2/aav = 4π2/4.065= 
9.70 which is not far from expected value 9.8. Next, we add the uncertainties in the graph and draw the 
best linear fitting with maximum /minimum slope that pass by origin. From the graphs we get amin= 3.635 
and  amax= 4.202.  So, we get gmin = 4π2/amax = 4π2/4.202= 9.38 and  gmax = 4π2/amin = 4π2/3.635= 10.85 
 
Table_2 

X Y(av.) 
∆Y 
 (+/-) Ymin Ymax 

Max. 
Slope 

Min. 
Slope 

  1 4 1.5 2.5 5.5 4.202 3.635 
2 8.3 1.8 6.5 10.1   
3 11.8 1.3 10.5 13.1 P1 (1; 1.5) P1 (1; 5.5) 
4 17 1.6 15.4 18.6 P2 (6; 25.5) P2 (6; 21.5)
5 21 1.1 19.9 22.1   
6 23.5 2 21.5 25.5   

                                                 
2 They should be expressed in the same unit, for sure. 

Amin Amax 

 Bmin Bmax 

       This way, by using the graphs we: 
1- have proved experimentally that our relation between  
    T and L is right. 
2- find out that our measurements are accurate because the  
    uncertainty interval (9.38, 10.85) for “g” does include the  
   officially accepted value g = 9.8m/s2  

 3-find the absolute error  ∆g =(10.85-9.38)/2=0.735m/s2 

     The relative error is ε = (0.735/9.70)*100% = 7.6% which  
      means a acceptable (< 10%) precision of measurement.  
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ABOUT THE ACCURACY AND PRECISION 
 
- Understanding accuracy and precision by use of hits distribution in a Dart’s play. 
 
 
   
 
 
 
 
 
 
 
- As a rule, before using a method (or device) for measurements, one should verify that the method 
produces accurate results in the range of expected values for the parameter under study. This is an 
obligatory step in research and industry and it is widely known as the calibration procedure. During a 
calibration procedure one records a set of data and makes sure that the result is accurate. 
 
In principle, the result of experiment is accurate if the “average of data” fits to the” officially accepted 
value”. We will consider that our experiment is “enough accurate” if the” officially accepted value” falls 
inside the interval of uncertainty of measured parameter; otherwise the result is inaccurate.  
 

The quantity 100x
C

CC

off

offAv
accu

−
=ε    %    (often ambiguously named as error) gives the relative shift of 

average from the officially accepted value Cofficial. It is clear that the accuracy is higher when εaccu is 
smaller. But, the measurement is inaccurate if   εaccu  > ε  (relative uncertainty of measurement).  

        Remember that relative uncertainty 100x
C

C

Av

∆
=ε %  is different from εaccu. 

Note: For an a big number of measured data and for accurate measurement, the average should fit to the  
expected value of parameter and εaccu should be practically zero.  Meanwhile, for a big number of 
measured data  ε tents to a fixed value different from zero.    Actually, ε can never be equal to zero.  
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CALCULATION OF UNCERTAINTY PROPAGATION BY USE OF DIFFERENTIALS  
 
 
-The derivative of a function y = y(x) is noted                                                        y’(x) = dy/dx      (9)                             
In this expression, the differentials dx and dy represent the infinitesimal small change of quantities x, y.  
Based on expression (1) we may relate these differentials                                     dy = y’(x)* dx    (10) 
The mathematical differentials are extremely small and non measurable but if we assume that the 
derivative of function y’ remains almost constant in a small but measurable region ∆x of x- values,  
we can write the relation (10) in the form                                                             ∆y = y’(x)*∆x    (11) 
This relation is used very efficiently in physics for error propagation calculation (type 3).    
If the function “y” has two variables x1, x2, then expr. (3) becomes     ∆y = y’x1*∆x1  + y’x2*∆x2    (12) 
 
 
-Ex_1. Measuring the length of an object by using a meter stick with the smallest unit is 1cm. The 
procedure consist in reading the positions x1, x2 of two object ends and calculating its length as L = x2  -  x1 
In this case we get 0.5cm absolute uncertainty during the reading process. So, if we read x1= 56cm we 
have ∆x1= 0.5cm and if we read x2= 96cm we have ∆x2 = 0.5cm, too.  Then, we calculate the best 
estimation for the length (y- function) of object as L = 96 - 56 = 40cm. To find ∆L we use eq.(12).  As    
the function is L = x2  -  x1  it comes out that  L’x1= -1 , L’x2 = 1  and  ∆L = +1*∆x2  - 1*∆x1  = ∆x2  -  ∆x1   
Before proceeding with numerical calculation we substitute “-“ by “+” because we wants to refer to the 
worst case of uncertainty. This is known as the conservative approach in uncertainty calculations. 
So, we get ∆L = ∆x2 + ∆x1= 0.5 + 0.5cm = 1cm   and   ε  =  ∆L/L*100 %  =  1/40*100  = 2.4 % 
 
 
-Ex_2. We measure the period of an oscillation and get T = 5.5 ± 0.5s. 
 Meanwhile, for the purposes of the study, we need to calculate an estimation for the quantity y = T2 . 
In this case, we may proceed quickly by using the derivative y’= dy/dT = 2T and dy =2TdT. Then, in 
physics, ∆y =2Tbest∆T.  Finally  y = ybest ± ∆y = 5.52 ± 2*5.5*0.5 = (30.25 ± 5.5) [s2] 
 
Remember that the use of max-min method requires a special attention to the form of mathematical 
expression. If the considered expression contains many variables, often one prefers to use the differential 
method.  The two following examples make easier to understand some advantages of differential method.  
 
 
Ex_3.  The measurements results for three physical parameters are  A= 5.1 ± 0.3; B = 25 ± 1;  
            C = 3.45 ± 0.05. Calculate the average, maximum, minimum values and relative 
            uncertainty for  ࢟ ൌ  כ  െ כ


 .  Pay attention to sig. figures and rounding off rules. 

 
                  3-a) Differential method (one starts by mathematical differential) 
 
- Calculate the mathematical differential of function y; 

ݕ݀ ൌ ܣ݀ כ ܤ  ܤ݀ܣ െ ܤ݀
ଶܥ

ܣ െ
ܤ כ ܥ2 כ ܥ݀

ܣ െ ܤ כ  ܣଶ݀ିܣଶሺെ1ሻܥ
 
- Convert mathematical differentials to physical differentials i.e. physical uncertainties and apply the 
conservative principle  ( everywhere + sign) 

ݕ߂ ൌ ܣ߂ כ ܤ  ܣ כ ܤ߂ 
ଶܥ

ܣ כ ܤ߂ 
ܥܤ2

ܣ כ ܥ߂ 
ଶܥܤ

ଶܣ כ  ܣ߂
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- Substitute the known best and absolute uncertainty values for A , B and C  into this expression 
ݕ∆               ൌ 0.3 כ 25  5.1 כ 1  ଷ.ସହమ

ହ.ଵ
כ 1  ଶכଶହכଷ.ସହ

ହ.ଵ
כ 0.05  ଶହכଷ.ସହమ

ହ.ଵమ כ 0.3  

࢟∆                ൌ 7.5
ܨ1ܵ ൌ ܿ݁ܦ0  5.1

ܨ1ܵ ൌ ܿ݁ܦ0  2.3338
ܨ1ܵ ൌ ܥܧܦ0  1.691

ܨ1ܵ ൌ ܥܿ݁ܦ0  3.432
ܨ1ܵ ൌ ܥܿ݁ܦ0 ൌ 20.0568

ܿ݁ܦ0 ൌ ܨ1ܵ ؠ  
 
Also,                                    ࢚࢙ࢋ࢟ ൌ 5.1 כ 25 െ ଶହכଷ.ସହమ

ହ.ଵ
ൌ 127.5

ܨ2ܵ ൌ ܿ݁ܦ0 െ 58.345
ܨ2ܵ ൌ ܿ݁ܦ0 ൌ 69.15

ܿ݁ܦ0 ൌ ૢ  
 
࢟ ൌ ࢚࢙ࢋ࢟ േ ࢟∆ ൌ ૢ ט ;  ࡹ࢟ ൌ ௩ݕ െ ݕ߂ ൌ 69 െ 20 ൌ ૢ; ࢞ࢇࡹ࢟ ൌ ௩ݕ  ݕ߂ ൌ 69  20 ൌ ૡૢ 
 
And, the relative uncertainty  is                                         ࣕ ൌ ∆௬

௬ಲೡ
כ 100% ൌ ଶ

ଽ
כ 100 ൌ ૢ% ؠ % 

           
 
                3-b) Max-Min method   (One must pay special attention to the form of math. expression)  
 

࢚࢙ࢋ࢟ ൌ 5.1 כ 25 െ
25 כ 3.45ଶ

5.1 ൌ 127.5
ܨ2ܵ ൌ ܿ݁ܦ0 െ 58.345

ܨ2ܵ ൌ ܿ݁ܦ0 ൌ 69.15
ܿ݁ܦ0 ൌ ૢ 

ࡹ࢟ ൌ ெܣ כ ெܤ െ
ெ௫ܤ כ ெ௫ܥ

ଶ

ெܣ
ൌ 4.8 כ 24 െ

26 כ 3.5ଶ

4.8 ൌ 115.2
ܨ2ܵ ൌ ܿ݁ܦ0 െ 66.3541

ܨ2ܵ ൌ ܿ݁ܦ0 ൌ 48.845
ܿ݁ܦ0 ൌ ܨ1ܵ ؠ ૢ 

࢞ࢇࡹ࢟ ൌ ெ௫ܣ כ ெ௫ܤ െ
ெܤ כ ெܥ

ଶ

ெ௫ܣ
ൌ 5.4 כ 26 െ

24 כ 3.4ଶ

5.4 ൌ 140.4
ܨ2ܵ ൌ ܿ݁ܦ0 െ 51.3777

ܨ2ܵ ൌ ܿ݁ܦ0 ൌ 89.022
ܿ݁ܦ0 ൌ ܨ1ܵ ؠ ૡૢ 

࢟∆           ൌ ሺݕெ௫ െ ࣕ     ெሻ/2 =  (89-49)/2 = 20      andݕ ൌ ∆௬
௬ಲೡ

כ 100% ൌ ଶ
ଽ

כ 100 ൌ ૢ% ؠ % 
 
 
Ex_4.  The data for three physical parameters are A= 5.1 ± 0.3; B = 25 ± 1; C = 3.45 ± 0.05. 
            Calculate the average, maximum, minimum values and relative uncertainty for  ࢟ ൌ כ

   .  
             In this case the expression contains only the product and the power of parameters. 
 
              
          4a) Differential method starting by natural logarithms     
 
-Calculate the best value        ࢚࢙ࢋ࢟ ൌ ಳೞ

మ ಳೞכ
ఱ

ಳೞ
య ൌ ହ.ଵమכଷ.ସହఱ

ଶହయ ൌ ଶ.ଵכସ଼଼.ହଽଽ
ଵହଶହ

ൌ 0.81642436
ܨ2ܵ ؠ . ૡ

ܨ2ܵ  

 
- Take the natural logarithm of expression           ݈݊ݕ ൌ ଶܣ݈݊  ହܥ݈݊ െ ଷܤ݈݊ ൌ ܣ2݈݊  ܥ5݈݊ െ  ܤ3݈݊
 
- Take the differential of both sides                                                                    ௗ௬

௬
ൌ 2 ௗ


 5 ௗ


െ 3 ௗ


 

 
- Convert mathematical differentials to physical differentials i.e. physical uncertainties and apply the 
  conservative principle  (put everywhere + sign)                                            ௱௬

௬
ൌ 2 ௱


 5 ௱


 3 ௱


                            

࢟ࢤ                
࢟

ൌ 2 .ଷ
ହ.ଵ

 5 .ହ
ଷ.ସହ

 3 ଵ
ଶହ

ൌ 0.117647
ܨ1ܵ ൌ ܿ݁ܦ1  0.07246

ܨ1ܵ ൌ ܿ݁ܦ5  0.12
ܨ1ܵ ൌ 1݁ܿ ൌ 0.310107

ܿ݁ܦ2 ؠ .  
 
-  Calculate the absolute uncertainty as                        Δy ൌ yAv *0.3 ൌ 0.82 * 0.31 ൌ  0.254  

2SF ؠ .   
 
So, the result is                                     y ൌ 0.82  േ .          and    ࢿ ൌ .

 .ૡ
כ % ൌ . ૡ

ࡲࡿ ؠ % 
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        4b) Max-Min method    
  
࢚࢙ࢋ࢟                                                  ൌ ಳೞ

మ ಳೞכ
ఱ

ಳೞ
య ൌ ହ.ଵమכଷ.ସହఱ

ଶହయ ൌ ଶ.ଵכସ଼଼.ହଽଽ
ଵହଶହ

ൌ 0.81642436
ܨ2ܵ ؠ . ૡ

ܨ2ܵ  

 
 
࢞ࢇࡹ࢟                                                  ൌ ಾೌೣ

మ ಾೌೣכ
ఱ

ಾ
య ൌ ହ.ସమכଷ.ହఱ

ଶସయ ൌ ଶଽ.ଵכହଶହ.ଶଵ଼ହ
ଵଷ଼ଶସ

ൌ 1.1078833
ܨ2ܵ ؠ . 

 ܨ2ܵ

 

ࡹ࢟                                                  ൌ ಾ
మ ಾכ

ఱ

ಾೌೣ
య ൌ ସ.଼మכଷ.ସఱ

ଶయ ൌ ଶଷ.ସכସହସ.ଷହସଶସ
ଵହ

ൌ 0.595603
ܨ2ܵ ؠ . 

ܨ2ܵ  

 
࢟∆           ൌ ሺ࢞ࢇࡹ࢟ െ ࣕ     ሻ/ =  (1.1 - 0.6) / 2 = 0.25      andࡹ࢟ ൌ ∆௬

௬ಲೡ
כ 100% ൌ .ଶହ

.଼ଶ
כ 100 ൌ % 

 
Remember: The result of a calculation cannot have higher precision than any of terms.  
So, one starts by doing the mathematical calculations and follows by keeping at the result the number of 
digits that fits to the less precise term (conservator principle). In practice, one has to note the significant 
figure and the number of decimals for each term. Then, depending on the form of mathematical expression, 
one applies the rules of Sig.Fig.and DEC to identify the uncertain digit at the result. Finally, one rounds off 
the result.   
 
 


