EXPERIMENT: Kirchhoff's Rules

Objective: To verify Kirchoff's rules:

Loop Rule: The sum of all potential differences encountered while going around any closed loop in a circuit is zero: $\sum V_i = 0$.

N.B. When going from (-) to the (+) terminal of an *emf* there is a positive difference of potential and when going through a resistor along the current direction there is a negative difference of potential. In the difference of potential (V_2 - V_1), V_1 is the previous and is the last value V_2 first following a selected direction of circulation in circuit.

Junction Rule: The sum of all currents flowing into or out a junction in a circuit is zero: $\sum I_i = 0$.

N.B. A current flowing into the junction is considered positive while the current flowing out of a circuit is considered negative.

<u>Materials</u>: Three resistors R_1 = 20 Ohm, R_2 =30 Ohm, R_3 =100 Ohm; two 6V sources,

a voltmeter and an ammeter.

Procedures: Before building the electric schemas, measure and record the precise resistance values.

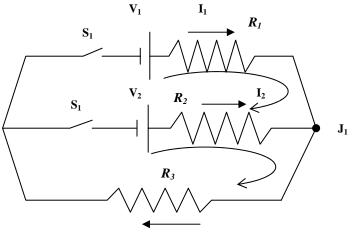
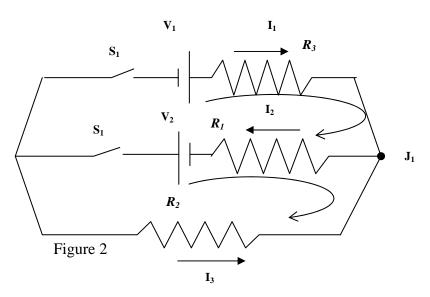


Figure 1 I₃

-Connect the circuit shown in figure 1

- Switch the switches S₁, S₂.

Measure and record "quickly" the terminal voltage V₁, V₂ of two sources using the voltmeter, and three current values I₁, I₂ and I₃ using the ammeter.
As far as finished with these measurements, switch off S₁, S₂ to avoid their discharge.
Use the measured values V₁, V₂, I₁, I₂ and I₃ in formulas () and verify if they transform them to identities . Use the uncertainty calculations to prove this.


After selecting the circulation direction as shown in the figure the Kirchoff's rules give:

Loop _1:
$$V_1 - I_1 * R_1 + I_2 * R_2 - V_2 = 0 \rightarrow R_1 * I_1 - R_2 * I_2 = V_1 - V_2$$
 (1)

Loop _2:
$$V_2 - I_2 * R_2 - I_3 * R_3 = 0 \rightarrow R_2 * I_2 + R_3 * I_3 = V_2$$
 (2)

Junction
$$_J_1$$
: $I_1 + I_2 - I_3 = 0 \rightarrow J_1 + I_2 = I_3$ (3)

Next, build the scheme presented in figure 2. Write three equations derived from the Kirchoff's rules for the scheme in figure 2. Repeat and record the measurements for V_1, V_2, I_1, I_2 and I_3 and repeat the procedure of verifications the same way you did for the scheme in figure 1.

Calculations

- Put the measured values for terminal voltages V_1 , V_2 , and resistors' values R_1 , R_2 , R_3 , in the equation derived from Kirchoff's rules for the scheme in figure 2. -Calculate the three current values I_{1t} , I_{2t} and I_{3t} from these equations. - Compare the calculated values with the measured values I_1 , I_2 and I_3 .

Conclusions:

- 1- Do your measured data satisfy the Kirchoff's rules at junction J_1 and around the two loops for the scheme in figure 1?
- 2- Do your theoretical calculations based on Kirchoff's rules fit with measured values for currents corresponding to the scheme in figure 2?