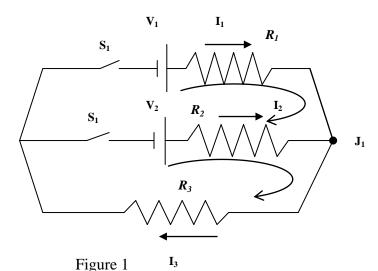
EXPERIMENT: Kirchhoff's Rules

Objective: To verify Kirchoff's rules:

Loop Rule: The sum of all potential differences encountered while going around any closed loop in a circuit is zero: $\sum V_i = 0$.


N.B. When going from (-) to the (+) terminal of an *emf* there is a positive difference of potential and when going through a resistor along the current direction there is a negative difference of potential. In the difference of potential (V_2-V_1) , V_1 is the previous and is the last value V_2 first following a selected direction of circulation in circuit.

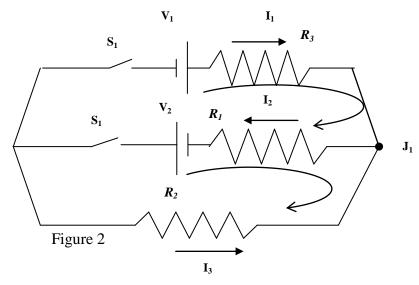
Junction Rule: The sum of all currents flowing into or out a junction in a circuit is zero: $\sum_{i} I_{i} = 0$.

N.B. A current flowing into the junction is considered positive while the current flowing out of a circuit is considered negative.

<u>Materials</u>: Three resistors R_1 = 20 Ohm, R_2 =30 Ohm, R_3 =100 Ohm; two 6V sources, a voltmeter and an ammeter.

<u>Procedures</u>: Before building the electric schemas, measure and record the precise resistance values by using a multimeter.

- -Connect the circuit shown in figure 1
- Switch the switches S_1 , S_2 .
- **Measure** and record "quickly" the terminal voltage V_1,V_2 of two sources using the voltmeter, and three current values I_1 , I_2 and I_3 using the ammeter.
- As far as finished with these measurements, switch off S_1 , S_2 to avoid the discharge of batteries.
- Use the measured values V_1, V_2, I_1, I_2 and I_3 in formulas (1,2,3) and verify if they transform them to identities. Use the uncertainty calculations to prove this.


After selecting the circulation direction as shown in the figure the Kirchoff's rules give:

Loop _1:
$$V_1 - I_1 * R_1 + I_2 * R_2 - V_2 = 0 \longrightarrow R_1 * I_1 - R_2 * I_2 = V_1 - V_2$$
 (1)

Loop _2:
$$V_2 - I_2 * R_2 - I_3 * R_3 = 0 \rightarrow R_2 * I_2 + R_3 * I_3 = V_2$$
 (2)

Junction
$$_J_1$$
: $I_1 + I_2 - I_3 = 0 \rightarrow I_1 + I_2 = I_3$ (3)

Next, build the scheme presented in figure 2 by inverting the poles of battery 2. Write three equations (1', 2', 3') derived from the Kirchoff's rules for the scheme in figure 2. Measure and record V_1, V_2, I_1 , I_2 and I_3 . Repeat the procedure of verifications the same way you did for the scheme in figure 1.

Calculations

- Put the measured values for terminal voltages V_1 , V_2 , and resistors' values R_1 , R_2 , R_3 , in the equation (1', 2', 3') derived from Kirchoff's rules for the scheme in figure 2.
- -Calculate the three current values I_{1t} , I_{2t} and I_{3t} from these equations.
- Compare the calculated values with the measured values I_1 , I_2 and I_3 .

Conclusions:

- 1- Do your measured data satisfy the Kirchoff's rules at junction J₁ and around the two loops for the scheme in figure 1?
- 2- Do your theoretical calculations based on Kirchoff's rules fit with measured values for currents corresponding to the scheme in figure 2?