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11.1 APPLICATION OF AMPERE’S LAW IN SYMMETRIC MAGNETIC FIELDS 

 

- If one knows that a magnetic field has a symmetry, one may calculate the magnitude of 


B  by use of 

Ampere’s law:       The   integral   of   scalar  product    cos* BdldlB 


   over  a  closed  path is   

  net

pathClosed

IldB 0

_

* 


         (1)        Inet  is the net current flowing through the area inside closed  path. 

The right hand rule fixes the positive sense of circulation on the closed path as follows; if the thumb 

points along direction of net current  ( Inet ) sense, the curled fingers indicate the positive sense of 

circulation on the closed  path. 

 

Examples. a) Find the magnitude of field due to a current I flowing in a straight long wire (fig.1). Due  
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         Fig.1     

Cylindrical symmetry of     
                                      

 

 

 

b) Find the magnetic field due to an ideal infinite solenoid that has n turns/m and carries the current I. 

In ideal infinite long solenoids the field outside the solenoid is zero (Fig. 2) and inside it is pretty much 

  uniform (same  


B  everywhere). Its direction (to the right as shown) is found by the right hand rule.  

 

 
Fig.2 

 

As, there is nl wires in length l; so the net current through the square path is nlI. Then, from (1) we get 

     IlnlBIlB net **** 00                       and                      nIB 0                            (3) 

 

c) Find the magnetic field of a  toroidal coil  with  N  turns each carrying the same current  I .  

 

 



B  
to the cylindrical symmetry, 



B   has the same magnitude at  all points at 

distance  R  from the wire and it is tangent to the circle passing by these 

points; the right hand rule gives the same direction for  the sense "+"  of 

circulation and      (fig.1).One selects a circular path and applies express. (1) 
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                  (2) 

Note that the vector          has the same direction as vector 


B . 

 

 

One may select a closed square (with side l ) 

path like that shown in fig.2  ("+" sense is 

fixed by right hand rule) and apply expr. (1).   

As                  along field lines inside ;   

             outside or along the "vertical" 

sides it comes out that                  

l 

A quick observation shows that the magnetic field lines are circles 

passing perpendicular to the toroid sections. We select a circular 

path with radius r as shown in fig .3 and apply the Ampere’s law. 

As the field magnitude "B" is the same around the circuit, we get: 

- inside wired section   I
r

N
BNIrB






2
2* 0

0       (4) 

- outside toroid    B = 0 because the net current is –N*I + N*I = 0  

- inside toroid      B = 0  because net current is zero. ( I = 0 )             Fig.3 
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11.2 INDUCTANCE 

 

- A carrying current solenoid ( ) is the best tool to build, change and control a magnetic field. 

 The main property of a solenoid is the reaction versus the change of magnetic flux passing through it. 

 

   
 

The reaction of solenoid does not allow instantaneous set of current value in circuit as given by Ohm’s 

law (I = ε / Rsol). This kind of reaction happens when the switch is turned off, too, but  the direction of 

inducted current "i" is the same as that of  I and 


indB has the same direction as


IB ; the circuit reaction 

does not " want " to leave the flux decrease.  In the first case, one observes a gradual increase (Fig. 5a)  

of the net current and in the second case one observes a gradual decrease (Fig5.b) of current in circuit.                    

 

 

 

 

 

 

 

Fig5.a Switch turn on                                                   5.b   Switch turn off 

                       

- The phenomena presented in the upper paragraph is  known as  self-induction because it is related to 

the flux built by the solenoid and passing through itself. This is a phenomenon that happens in all circuits; 

the presence of a solenoid into the circuit just makes it more pronounced.  

If there is a magnetic flux  ΦL  through a single turn (loop) of a coil (solenoid),  then, the net flux through 

its  N  turns  is  N* ΦL . The flux linkage through the coil is               Φc =N* ΦL  [Weber]                    (5) 

 

-In many situations (ex. transformers), two coils are arranged in such way that the magnetic flux from coil 

" 2 "  through coil  " 1 " (and vice-versa Fig.6) be maximal. Note that each coil is part of a different circuit  

 
 

 

 

I2 
I1 
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

indB  



IB  

Fig.4 presents what happens at a solenoid a few moments 

after the switch is turned on. The current "I", due to source 

"ε", builds inside solenoid the field 


IB "directed right side ". 

This means an increase of magnetic flux (it was 0) inside 

the solenoid. The Lenz law tells that the  " solenoid will 

react "  by inducting a current " i " such that the related 

magnetic field 


indB be opposite to 


IB . So, the inducted  

current  "i"  flows in the opposite sense with respect to "I".  

 

ε 

 I   I 

t t 

Imax = ε/Rsol 

and carries a different current ( I1 ,  I2). In this situation, the flux through each 

turn  of  coil_1  ( let's refer to coil "1" )  is constituted by two components:  

ΦL   due to current I1 and ΦM  due to current  I2  through  second coil.  Then,   

                                                                     (6)     

the net  flux linkage through  turns coil_1  ( with N1 turns )     is  

 

                                                                                        (7) 

 

Therefore, the expression for the efm inducted  in  coil_1  is 

 

                 
 

  
      

 

  
       

 

  
                            (8)   

(7) 

Fig.6 

Fig.4 
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- So far, one uses several parameters (loop diameter, coil length, number of turns and current) to express the 

E.M. induction behaviour of coils. Next, one introduces a single parameter to measure the effect of coils 

geometry on its E.M. induction.  Let's consider first the self-induction of coil "1" presented by the factor 

"N1* ΦL" at  expression  (7).  The field "B1" and its flux through one turn "ΦL" are proportional to the 

magnitude of current "I1". As the other contributions to  "N1*ΦL " depend on number of loops and the 

geometry of  coil_1, one puts them together into a single parameter  "L1" known as coil self-inductance.  

 

Then, the self-inducted flux linkage in coil " 1 " can be expressed as                                       (9) 

 

 L1 [H-Henry] is a parameter that depends on coil "1" geometry (length, diameter, number of turns) and  

defines the "self-inducted emf " by relation 

                                                                                    
 

  
        

 

  
           

   

  
         (10)   

  

The direction of   εL  is such that the related current  opposes   the  changes of current  I  in circuit.  

                                    
           Fig. 7.a                                                                                     Fig.  7.b 

 

- The " mutual inductance M " measures the geometrical effects on the part of flux through first coil    

due to current in second coil. So,                                                                                             (11) 

 

The parameter " M " depends only on the geometry of the whole set of two coils. It has the  same value 

when calculating the effect of current in coil 1 on flux through coil 2,  i.e.            .  One may 

figure out easily that "M" is larger when the coils are closer to each other and when they have the same 

central axe. Based on (11) one gets that emf  in coil 1 due to change of  flux generated  from coil 2  is 

                                                                     
 

  
        

 

  
         

   

  
                      (12) 

Then, expression (8) can be written as  

                                                                                         
   

  
  

   

  
                                       (13)  

                            

11.3 LR CIRCUITS 

 

-A real inductor L has always a resistance; in the following model one refers to an ideal inductor (zero 

resistance) and includes the inductor resistance into external resistor R.  To find the evolution of  current 

in a RL circuit, one may apply the Kirchhoff rule to the circuit in Fig. 8 at a moment "t" when there is a 

self-inducted emf  "εL" with magnitude  " LdI/dt "  acting in circuit (this is not a steady state situation).  

 

iL 

a) Once the switch is turned on, the current " I " starts flowing along the 

direction shown and builds up a magnetic field in the coil. This increases 

the magnetic flux through coil induces an emf . This emf produces current 

"iL" directed in opposite sense to I. Consequently, there is only a moderate 

increase of current  "I" in circuit. Kirchhoff’s rule gives: 

 
dt

dI

R

L
I

Rdt

dI
LIRIR L 


 00                 (14) 

To solve equation (14) one introduces a new variable    I
R

y 


     (15) 

Note: The induction effect is counted by εL (no need to include "iL" in calculation)  

Fig.8 

iL iL 
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 Time derivative of (15) gives  
dt

dI

dt

dy
  (16)     By substituting (14) and (15) into equation (13) one get 
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At t = 0,   I=0    and    y0= ℇ / R .  Then,  by   noting   ℇ / R ≡ Imax             the expression  (16) gives                                 

  
 

 
   

 

 
  

 

 
               

 
 

 
              

  

   )                                                (18) 

 

 
  
- Once the current gets to value Io, there is no more inducted efm in the circuit because the flux remains 

constant. The flux through the coil changes when the source  ε is switched off. Note that, in this case, one 

needs  a closed circuit to observe the current evolution. That’s why we refer to the scheme presented in 

Fig.10a where the switch S2 is turned on as the switch S1 is turned off.  In this situation, the inducted emf 

                                                  

                                               
  Fig.10.a                                                                                    Fig.10.b 

 

opposes the decrease of magnetic flux through coil by producing a current "iL " along the same sense as 

the current "I" ( εL = - L*dI/dt  is positive because dI/dt < 0 ). The Kirchhoff rule for this situation gives 

 

                                    
  

  
       

  

 
  

 

 
    

  

 
    

 

 
 

 

 

 

    
   

and  

                      
 

    
  

 

   
         

 
 

          because at t = 0          
 

 
 

  

Then, with notation  τ  = L/ R  one get                         
 

                                                    (21)             

 

The graph in figure 10.b presents the decrease of current following expression (20).                                                      

For t = τ = L/R, the current falls down by 63% of its initial value I0 and gets to 0.37% of I0. 

After defining the time constant as                 RL         (19)    

the expression (17)  transforms to               
 

 )       (20) 

At time   t = τ   the current is  0.63*I0. 

 
A similar function describes the increase of charge Q in a capacitor  

in a RC circuit but in that case  τ = RC.  Fig.9 

iL iL 
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11.4 ENERGY STORED INSIDE AN INDUCTOR 

 

-Let’s consider another time the circuit in fig.8  a few moments after the switch is turned on. At a moment  

" t ", the relation (14) is written as              
dt

tdI
LRtI

dt

tdI
LRtI

)(
)(0

)(
)(                   (22) 

  

Note that I(t) is smaller than the current value at steady state (I0 = ε /R).  

 

By multiplying by I(t) both sides of (22) one get              
dt

tdI
tLIRtItI

)(
)()()( 2                            (23) 

 

By referring to an ideal emf source, the product "I(t)*ε" would present  the power supplied by  source 

into the circuit at the moment t. The factor I
2
(t)*R is the power dissipated thermally into the resistor at 

this moment .  Then,  the term   
dt

tdI
tLI

)(
)(   would present the power being supplied to the inductor at 

moment t . By referring to the direction of current  I   and the polarity of inducted emf  εL at  Fig.8, one 

might figure out that the source "ε" is supplying energy in circuit and the "inducted emf source εL" is 

storing energy inside the inductor "L" as a magnetic field energy UL(t).  

 

So, the increase rate of magnetic energy stored in inductor (i.e. dUL/dt) is equal to the power delivered  

by the source "ε" to the "εL".  One get the energy stored at inductor from t=0 till time  " t " as  follows       

 

                      

t t

LLL
L tI

LUdItILdUtdItLIdU
dt

tdI
tLI

dt

tdU

0 0

2

2

)(
)()()(

)(
)(

)(
 

So, the energy stored in inductor at moment "t" during transitory period is           
 

 
                 (24) 

and at any moment  after transitory period  (when I= I0 = Imax = ε /R )                  
 

 
     

                (25) 

 

This energy is stored inside the inductor. It is due to the presence of magnetic field inside the inductor 

and it remains the same during all the steady state in circuit.   

                                                                                                                                            

Remember that the electric field energy stored inside a capacitor at the end of the transitory period is       

   
 

 

  

 
   or     

 

 
     and one uses the letter U to indicate that this is a type of "potential energy". 

 

 

- Let’s see the case of a solenoid with n [turns/m],  length  l [m], cross section area  A and current  I [A]. 

 

The magnitude of field inside solenoid (ideal model, see relation 3 ) is                nIB 0                      (26)   

 

The magnetic flux through it is ILIlAnnIAlnBAlnBAN ********)*(*)*()*( 2
00       (27) 

 

So, the self inductance for a solenoid  is                                      lAnL *** 2

0                                (28) 
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By  substituting  (28)   at  relation (24)  and  isolating I  from  (26)   as 
n

B
I

0
   ,  one gets 

 

                                                lA
B

n

B
lAnLIU L *

2
*

2

1

2

1

0

2

22

0

2
2

0

2


                                              (29) 

 

This energy is stored inside the whole volume (A*l) of solenoid. So, the energy stored inside the unit  

 

volume i.e. the density of magnetic energy is                  2

0

*
2

1
BuB


                                                  (30) 

 

-It is interesting to mention that the amount of magnetic energy given by expression (29) get converted 

into electric energy of the electric spark produced at the switch while it is turned off.    

 

  Example: The ignition coil in an automobile makes use of this effect to fire the spark plug.   

 

Important Notes:  - The expression (30) is valid for any magnetic field.  

- It is very similar to the density of electric energy (any electric field    20 *
2

EuE


  ) 

- As expected (from wave nature of fields) these energy expressions are ~ to the square of field strength. 


