
 1 

12.1 OSCILLATION OF ELECTRIC VARIABLES IN A LC CIRCUIT  

 

- Let’s consider a circuit with a capacitor  C and an inductor L in series (see fig.1); the capacitor has     

a charge "Q0" at t = 0. At this moment one turns the switch on and the charge of capacitor C starts 

flowing into the circuit; it will build a current "I " as shown in fig. The increase of flux into the inductor 

gives rise to an inducted εL ( and related  iL ) with the polarity shown in figure. The second rule of 

Kirchhoff (start from " – " plate of capacitor) gives  
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This is the equation of SHO and its solution has the form                     )sin()( 00   tQtQ        (4) 
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Fig.2 

 

For t > 0, a part of the energy is stocked as electric energy inside the capacitor t
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Figure 3 presents the evolution of each part of 

of energy with time. Note that their sum is all 

time constant (like at any SHO) and when one 

of  them is maximum the other one is zero. 
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The current  I  is equal to "-" change rate of charge Q in capacitor plates.            

So,  as  0
dt

dQ
    and     I > 0      one gets       I(    
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 Then, by substituting relation (*) in eq.1 one gets      
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From expressions (1-6) comes out that: “if there is some energy stored      

in a LC circuit, the circuit will generate  a SHO with circular frequency 

LC

1
0   for  the current, the voltage  and the charge in capacitor. 

Fig. 2 shows the variation of Q(t) and I(t) in time; the charge in capacitor   

and its voltage VC = Q/C  are  advanced  by π/2 versus the current in circuit. 

When  QC and VC are maximum the current in circuit is zero (and vice versa). 

At t = 0, all the energy is electric and stocked inside the capacitor : 
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12.2 DAMPED OSCILLATIONS IN A CIRCUIT C, L, R 

 

- In previous section we considered an ideal inductor with zero resistance and we got a result which is 

ideal; i.e.  SHO for Q, I and U in the circuit. This means oscillations that follow to infinity time. Now, 

let’s see the case of a real inductor; i.e. an inductor resistance R. In this case one has a circuit with  

C, L, R in series (fig.4). Assume that, initially,  at t = 0s, the capacitor has its maximum charge Q0 . 

    
   Fig.4 

   

This is the equation of a damped harmonic oscillation. One might remember the equation for damped 

harmonic motions :       0)(
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m        where  b   is the damping coefficient. 

By referring to DHO (NYC folder) , one finds out that the solution of (10) has the form 
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where the damped circular frequency is                               
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The un-damped circular frequency for a C, L, R circuit corresponds to R = 0 and is   
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- The evolution of electric parameters (Q, I, U) in circuit depends on the relative values of R, L and C. 

 

a) There are under damped oscillations if R < 2ω0L. The amplitude of oscillations for  (Q, I, U) 

decays exponentially.  Example (Fig.5a):              /
0 *)( teQtQ       where τ = 2L/R           (14) 

b) There are critically damped oscillations if R = 2ω0L. Actually, in this case there are no 

oscillations in circuit. All electric variables just fall to zero the fastest way (Fig.5b-down).  
c) There are over damped oscillations if R > 2ω0L. Even in this case there are no oscillations in 

circuit. All electric variables just fall to zero with time, but slowly (Fig.5b-up). 

  
Fig.5         (a)                                                                      (b) 

At this moment ( t = 0 ) one  turns the circuit " on ". 

Let´s apply the second rule of Kirchhoff for a moment 

t > 0. We will get 
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 By using the expression (*) for the current, we get 
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