12.1 OSCILLATION OF ELECTRIC VARIABLES IN A LC CIRCUIT

- Let's consider a circuit with a capacitor C and an inductor L in series (see fig.1); the capacitor has a charge "Q₀" at t = 0. At this moment one turns the switch on and the charge of capacitor C starts flowing into the circuit; it will build a current "I" as shown in fig. The increase of flux into the inductor gives rise to an inducted ε_L (*and related* i_L) with the polarity shown in figure. The second rule of Kirchhoff (start from " – " plate of capacitor) gives

$$V_c(t) - \varepsilon_L = \frac{Q(t)}{c} - L \frac{dI(t)}{dt} = 0$$
(1)
The current *I* is equal to "-" *change rate* of charge O in capacitor plates.

 $c + \frac{1}{1} + \frac{1}{1} = \frac{i_L}{1}$ The curr $c + \frac{1}{1} + \frac{1}{1} = \frac{1}{1}$ So, as $\frac{1}{1}$ Then, by O(t)

as
$$\frac{dQ}{dt} < 0$$
 and $I > 0$ one gets $I(t) = -\frac{dQ(t)}{dt}$ (*)
n, by substituting relation (*) in eq.1 one gets

$$\frac{Q(t)}{C} + L \frac{d^2}{dt^2} Q(t) = 0 \rightarrow \frac{d^2}{dt^2} Q(t) + \frac{1}{LC} Q(t) = 0$$
(2)

By noting
$$\omega_0^2 = \frac{1}{LC} - i.e. - \omega_0 = \sqrt{\frac{1}{LC}}$$
, the eq.(2) takes the form $\frac{d^2}{dt^2}Q(t) + \omega_0^2Q(t) = 0$ (3)

This is the equation of SHO and its solution has the form
$$Q(t) = Q_0 \sin(\omega_0 t + \varphi)$$
 (4)
At $t = 0$, $Q = Q_0$ that fixes $\varphi = \pi/2$. So, $Q(t) = Q_0 \sin(\omega_0 t + \pi/2) = Q_0 \cos(\omega_0 t)$ (5)
Then $I(t) = -\frac{dQ(t)}{dt} = Q_0 \omega_0 \sin \omega_0 t = I_0 \sin \omega_0 t$. So with $I_0 = Q_0 \omega_0$ $I(t) = I_0 \sin \omega_0 t$ (6)

From expressions (1-6) comes out that. If there is some energy stored
in a LC circuit, the circuit will generate a SHO with circular frequency
$$\omega_0 = \sqrt{\frac{1}{LC}}$$
 for the *current*, the *voltage* and the *charge in capacitor*.
Fig. 2 shows the variation of $Q(t)$ and $I(t)$ in time; the charge in capacitor
and its voltage $V_C = Q/C$ are advanced by $\pi/2$ versus the current in circuit.
When \mathbf{Q}_C and \mathbf{V}_C are maximum the *current in circuit is zero* (and vice versa).

At t = 0, all the energy is electric and stocked <u>inside the capacitor</u> :

6) comes out that wif there is some an arou

Fig.2

Fig.1

$$U_{E-max} = \frac{Q_0^2}{2C} \tag{7}$$

For t > 0, a part of the energy is stocked as *electric energy inside the capacitor* $U_E = \frac{Q_0^2}{2C} \cos^2 \omega_0 t$ and

the other part as magnetic energy inside the inductor $U_B = \frac{1}{2} U_0^2 \sin^2 \omega_0 t$; so the <u>total energy in circuit</u>

Energy

is
$$U = \frac{Q_0^2}{2C} \cos^2(\omega_0 t) + \frac{U_0^2}{2} \sin^2(\omega_0 t)$$
 (8)

Figure 3 presents the evolution of each part of of energy with time. Note that their sum is *all time constant* (like at any SHO) and when one of them is maximum the other one is zero.

12.2 DAMPED OSCILLATIONS IN A CIRCUIT C, L, R

- In previous section we considered an *ideal inductor* with zero resistance and we got a result which is ideal; i.e. *SHO for Q, I and U in the circuit*. This means oscillations that follow to infinity time. Now, let's see the case of a real inductor; i.e. an inductor resistance R. In this case one has a circuit with C, L, R in series (fig.4). Assume that, initially, at t = 0s, the capacitor has its maximum charge Q_0 .

At this moment (t = 0) one turns the circuit " on ". Let's apply the second rule of Kirchhoff for a moment t > 0. We will get

$$\frac{dI}{dt} - L\frac{dI}{dt} - IR = 0 \tag{9}$$

By using the expression (*) for the current, we get

$$L\frac{d^{2}Q(t)}{dt^{2}} + R\frac{dQ(t)}{dt} + \frac{Q(t)}{C} = 0$$
 (10)

Fig.4

This is the equation of a damped harmonic oscillation. One might remember the equation for damped harmonic motions : $m\frac{d^2x(t)}{dt^2} + b\frac{dx(t)}{dt} + kx(t) = 0$ where **b** is the damping coefficient. By referring to DHO (NYC folder), one finds out that the solution of (10) has the form

$$Q(t) = Q_0 * e^{-(R/2L)*t} \cos(\omega' t + \delta)$$
(11)

where the *damped circular frequency* is

$$\omega' = \sqrt{\omega_0^2 - \left(\frac{R}{2L}\right)^2} \tag{12}$$

The <u>un-damped circular frequency</u> for a C, L, R circuit corresponds to $\mathbf{R} = \mathbf{0}$ and is $\omega_0 = \frac{1}{\sqrt{LC}}$ (13)

- The evolution of electric parameters (Q, I, U) in circuit depends on the relative values of R, L and C.

- a) There are <u>under damped</u> oscillations if $R < 2\omega_0 L$. The <u>amplitude</u> of oscillations for (Q, I, U)<u>decays exponentially</u>. Example (Fig.5a): $Q(t) = Q_0 * e^{-t/\tau}$ where $\tau = 2L/R$ (14)
- b) There are <u>critically damped</u> oscillations if $R = 2\omega_0 L$. Actually, in this case there are no oscillations in circuit. All electric variables just fall to zero the fastest way (Fig.5b-down).
- c) There are <u>over damped</u> oscillations if $R > 2\omega_0 L$. Even in this case there are no oscillations in circuit. All electric variables just fall to zero with time, but slowly (Fig.5b-up).

