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2.1 ELECTRIC FIELD 

 

- If one would use a thermometer to measure the temperature at different locations of a big city, one would 

record a set of different values. This set of temperature values at different locations is labelled as a field of 

temperature. Similarly, a distribution of air pressure values at different locations is a pressure field .  

Those are two examples of scalar fields (because of the scalar nature of field parameter). The main 

objective of field’s models is the quantitative comparison of the values for a physical parameter at different 

space locations. If the considered parameter is a vector, one deals with a vector field. The electric field is a 

vector field.     How does one define the vector of electric field? 

 

-Initially, the electric field appeared as an useful intermediary concept to answer questions:  

What way interact two electric charges?..or.. How does a charge "knows" the presence of the other charge?  

However, with the development of electromagnetic theory, the scientists realized that the electric field is 

one of the basic constituents (matter and fields) of the nature. 

 

- One has adopted the following model for the interaction between two electric charges:                            

Once an electric charge Q “appears” at a given point of space, it creates its electric field at all space 

locations around it. Then, if another electric charge q “shows up” at a point P of this space, it gets straight 

away the action  of the local electric field  (created by the charge Q)  at point P.  

-  One defines the electric field vector at point P of space from relation            
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At this expression, PF


 is the electric force exerted on a small(<< 1C) test charge "qt" placed at point "P".     

From expression (1) comes out that the SI unit of electric field  is [ N/C ] and its magnitude is equal to 

numerical value  of electric force applied on the charge "+1C" placed at point  " P ".  

                                                                                                              

                                                                                                                                   
Fig 1. Electric field of a point charge Q at different locations of surrounding space. 

 

Note: One can find the electric field vector due to point charges at a given point P of space by referring to       

the Coulomb force exerted on the unit positive charge (+1C) placed at point P; but the unit is N/C. 
 

-  Actually, the definition (1) disregards the sources of electric field at P point and defines the electric field 

 as a propriety of space at this location, no matter what way it is built.  So, one can calculate  the electric 

force exerted on a charge " q " placed at " P " point of space straight away from local electric field       as   

                                                                                   


 PEqF *                                                        (3)  

   

If q > 0, the force has the same direction as the local field and if q < 0 it has the opposite direction.  

-By using the Coulomb law, one can get the electric field created by a point 

charge Q at the space location  


 rrr *  (origin of r-vector is at  Q charge)  as                                                        
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So, the magnitude of electric field at distance " r "  is  E(r)= kQ/r
2
 

 

Note: Expression (2) is valid for "P" points outside the volume of a charged object.   
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-If the electric field is due to a set of point charges q1, q2,..qN, by using  the principle of superposition  for 

Coulomb’s forces, one get that the principle of linear superposition  is valid for electric fields, too. 
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- Note that one defines similarly the gravitational field due to a mass "M" by using a test mass " mt "     

and the gravitation law  


 r
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.   It comes out that the gravitational field is  


 r
r

M
GE G *

2
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One says that a mass " M " creates a gravitational field       in the space around it. Then, if another mass        

" m "appears in this space, it will undergo the force                  due to local gravitational field. In the 

case of  gravitational fields, the direction of exerted force is always the same as that of the local field. 

 

 

2.2 ELECTRIC FIELD LINES 

 

-Figure 2.a shows the map of electric field due to a positive charge +Q. The electric field due to a set of 

two point charges +Q and -Q (see fig.2b) is found by applying relation (4). One may figure out that by  

drawings all electric field vectors at any point of space, the picture becomes very complicated. To avoid 

this problem, one uses the field lines; they help to visualize the basic information about the field pattern. 

 

                                
   Fig. 2a Electric field map (+Q)                            Fig.2b Electric field map (+Q and  -Q)  

                      

 

-Here are the rules that relate the electric field lines and the electric field vectors: 

 

a) The electric field lines have a direction; they emerge from (+) charges and enter to (-) charges.  

b) At any point of space, the direction of the electric field vector fits to the tangent to the field line 

passing by this point. 

c) The field lines never cross each other. Otherwise, it would be more than one direction for the vector 

of electric field at a given point!! 

d) The density
1
 of field lines around a point in space is proportional to the magnitude of electric field 

at this point. Thus, a high density of field lines tells that the magnitude of electric field is large and a 

low density of field lines shows an area with small magnitude of electric field. 

e) While the electric field is a physical reality, the field lines are not. They are just an intermediary tool 

used to give a visual and general information about the field.  

                                                 
1
 The number of lines that traverse a unit area perpendicular to local lines' direction  
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Figure 3 shows the " map " of electric field lines related to a set of two electric charges (+,-) and (+,+) . 

 

                    
 

Fig.3a The field lines for (+Q and –Q)                Fig.3b The field lines for a set of  (+Q and +Q)  charges                     

                known as "electric dipole"           

 

-Figure 4 shows the central part of an infinitely large plane with uniform distribution of charges on it. The 

electric field vector at any point of space in either side of this plane is perpendicular to the plane ( because 

the components parallel to plane cancel out each other). A detailed calculation shows that the magnitude of its 

electric field is the same in all space locations "close to this plane".  

If the vector 


E  is the same at every point of space region, one calls it 

a uniform electric field. One may see that there is a uniform electric field 

in the space close to a uniformly charged plane on one side of it; there is 

another (opposite direction) uniform field on the other side of plane.  

 

 

2.3 CONDUCTOR INSIDE AN ELECTRIC FIELD 

 

-When a neutral homogeneous conductor is placed inside an electric field       , its "free" electrons move  

on opposite sense of         (Fig.5a) and leave an unbalanced positive charge on the other side. This charge 

redistribution inside the conductor creates an internal field           directed in opposite sense to          .          

So, the resulting field inside the conductor is                     .  As long as           the "free" electrons 

continue to move in a way that increases the magnitude of         and consequently decreases the magnitude 

of    Enet = Eext – Eint ; when  Enet = 0 they stop moving and all conductor charges are at rest.  

So, if all charges are at rest, the net macroscopic field inside a homogeneous conductor is zero.  

Note that even though the electric field may be different from zero in microscopic level (close to the ions of 

crystalline structure), the field average (i.e. macroscopic field) is zero everywhere inside the conductor.  

 

                                                  
     Fig.5a  Two fields inside conductor                      Fig.5b  Deformation of external field lines close to conductor 

 

-What happens with the electric field outside the conductor close to its surface? No matter what is the 

direction of external electric field, at each outside location close to the surface, one may decompose it into 

two components; one parallel to the surface         and one perpendicular to the surface        . The shift of 

free electrons to the conductor surface builds up an additional field that reduces to zero the net parallel 

field(           ; otherwise the electrons would continue to move on conductor’s surface. Note that 

"normally" they cannot move along the vertical out of conductor without a “considerable force”.  

Fig.4 
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The redistribution of free electrons affects but does not reduce to zero           out  of conductor surface. 

So, in electrostatic, the electric field at any nearby point outside conductor is perpendicular to surface 

of conductor (fig.5b). Meanwhile, the net electric field everywhere inside the conductor, even close to 

its surface, is zero; otherwise the free electrons would move and the condition of static electric charges 

would not be valid. 

 

- Even without external fields, if one transfer electrons on a conductor, by 

contact method, they will push each other and, at electrostatic condition (all 

charges at rest) they will get distributed on object surface. A similar logic to 

that presented in previous paragraph brings to conclusion that, once all 

charges are at rest, the internal field is zero and it is perpendicular close to 

object surface  outside because only this direction leaves all charges at rest on surface. 

In fig.6, one has removed electrons; so, "+" charged  remain distributed uniformly on conductor surface. 

 

- At this point, one may figure out that, if one removes the material  inside the conductor and get a 

conducting shell, the electric field will be zero everywhere in the empty space inside no matter what is    

the electric field outside the conducting shell.  Actually, this is the situation inside a " Faraday cage ". 

 

 

2.4 MOTION OF CHARGES INSIDE UNIFORM FIELDS 

 

-If an elementary charged particle "q" (electron, proton, ion or many of them in a charged particle) is inside 

 a static uniform electric field with magnitude " E ", it is subjected to the electric force with magnitude 

 

                                                                   qEFel                                                                             (5) 

Due to their small mass (G~10-11Nm2/kg2, mel~10-31kg, mp~10-27 kg), the gravitation force on elementary particles   

is much smaller than electric force. So, the net force exerted  on a charged microscopic particle is almost 

equal to the electric force on it. In these circumstances, the second law of Newton gives 

 

                                                                                                                                            (6) 

and the particle moves at a constant acceleration (     is constant through a uniform field and                       ) 

 

                                                                         
    

 
                                                                                (7) 

 

2.5 CONTINOUS CHARGE DISTRIBUTION 

 

 Remember that Coulomb’s law is valid for charged point particles. In order to find the electric field due 

to a continuous charge distribution on/in a macroscopic object, at a point of space "P" one must: 

 

a) Divide the total charge into infinitesimal small elements, each of them with a small charge dq. 

b) Use the Coulomb’s law to find the field due to each " dq " at point "P" as         


 r
r

dq
kEd

2
    (8) 

c) Apply the principle of linear superposition and get the sum of all these infinitesimal fields as 

 

                                                  


  r
r

dq
kEdE

objectedchobjectedch _arg

2

_arg

                                                     (9) 

In these calculations, one has (always) to express dq charge as function of coordinates of its location, i.e. 

dq(x, y, z) so that one can calculate the value of integral (9). 

Fig.6 
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2.6 ELECTRIC DIPOLE 

 

-One calls electric dipole a set of two electric charges (-Q ;+Q) separated by a distance "d ". The electric 

dipole model is widely used in physics (radio / TV antennas, molecular interactions, crystal proprieties..).  

For example, in a polar molecule  (like HCl, CO2, H2O..) the centers of positive and negative charges do 

not coincide and there is a permanent molecular electric dipole. One uses this model even for non-polar 

molecules placed inside an external electric field because in this case they get an induced electric dipole. 

 

  

   2.6a ELECTRIC FIELD PRODUCED BY A DIPOLE 

 

- Let’s consider two point charges (+Q; -Q) at distance  d ≡2a  and let’s find the electric field at a point     

on the perpendicular line that pass by the dipole center at distance " r " (see Fig.7). The  net field at this 

point is the vector sum of electric fields built by each of two charges (+Q; -Q). At distance "r" from the 

dipole center, both fields have an equal magnitude calculated as (take qt = +1C for calculation of E): 

 

                                            
22 ar

Q
kEEE


                                                                          (10) 

 

Their directions are shown. To find the net field we consider the components along each axis; Ox and Oy. 



p      

         Fig.7 

 

So, the net electric field at "r" has only the y-component directed opposite to Oy;                     
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One has defined the moment of the electric dipole (-Q; +Q at distance d ) as                        (13)   

The electric dipole moment  


p   is directed from negative to positive charge(see fig .7). 

 

As d = 2a, one can use the magnitude of electric moment (p = Q*d ) in expression (12) and find that  

   

                                                
   

       
 

  
     

  

       
 

  
                                                            (14) 

 

The vector of electric field at a point on the perpendicular line that pass by the dipole center has opposite 

direction to that of the dipole moment vector. 

Along Ox; The two components have the same magnitude but 

are inversely directed. Their sum is zero. 

 

Along Oy; The two components have equal components 

cosEE y     cosEE y   

As they have the same angle " θ ", along -Oy, their sum is 

 

              cos2EEEE yyy  
                                  (11) 

 

From fig.7 one can see that        
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-For points on Ox  far from the dipole,    r >>a (far-field) and the magnitude of electric field is   

 

                                                                      
3r

p
kEnet                                                                         (15) 

 

Some more calculations show that the magnitude of electric field due to an electric dipole in the  

far field ( r >> a)  varies as ~
3

1

r
  for all locations , i.e. even for those that are not on line Ox. 

Note: When dealing with an electric dipole, one disregards charges that build it.  

          All calculations and conclusions are related to the electric dipole moment    .  
 

 

   2.6b THE ACTION OF UNIFORM ELECTRIC FIELD ON AN ELECTRIC DIPOLE 

 

- Let’s consider an electric dipole inside an uniform electrostatic field along Ox (Fig.8). Assume that it has   

a rigid structure and the dipole moment 


p  is directed at angle  versus the direction of uniform field     . 

 

- The components of electric forces along dipole axis (8.b), exerted on each charge, have equal magnitude 

but opposite directions. As the dipole is rigid, the forces' components along dipole direction cannot extend 

it; they just sum up to produce a result zero. The components of electric forces perpendicular to dipole axis 

have the same magnitude but opposite directions. So, they produce two torque actions which tent to rotate 

the dipole clockwise around an axis Oz passing by dipole center and perpendicular to the plane Oxy ( this 

plane contains the vectors of electric field          and  dipole moment      ). One may figure out easily that both 

those torques are directed along "-Oz" (i.e. into the plane) and have equal magnitudes  

 

                                                                                 sin
2

F
d

                                                   (16) 

 
Fig.8            (a)         θ 

  

 

 

 

                     (b) 

 

 

 

 

 

This torque tents to align the dipole moment  vector      along the lines of field, i.e. parallel to vector      . 
 

 

           where F= Q*E 

 

Consequently, the magnitude of net torque vector is 

 sin)(sinsin
2

*2 QEddFF
d

 

 

         sinsin)( pEEdQ                                    (17) 

 

As this torque is directed  opposite to Oz axe    

 

          sinpEz                                                       (18) 

 

Next, by referring to the cross product definition one finds 

out that  

                 


 Exp                                                     (19) 
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2.6c THE POTENTIAL ENERGY OF AN ELECTRIC DIPOLE 

 

- An object is at equilibrium when there is a minimum of potential energy of system (remember mechanics). 

An electric dipole inside electric field is at equilibrium when it is aligned along field lines; this means that 

it has a minimum of electric potential energy if its moment     is aligned at same direction as     field lines.  

So, if              , one must spend some "positive" external work for rotating it to an angle " θ " versus direction 

of      as this work must increase  the potential energy of system electric field - dipole ( Wext = ΔU > 0). 

 

-Also, only the differences of potential energy have a physical meaning and one ties the zero of potential 

energy to a configuration that simplifies the mathematical calculations. For an electric dipole inside an 

electric field, the calculations are easier if one chooses U( = 90
0 
) = 0 (not minimum), that is for

  


 Ep .  

 

-Next, to find the potential energy U(), for any angle θ,  one has to calculate the work done by the electric 

field       while the dipole moment 


p  get rotated from the angle o= 90
0
  to that angle  versus     direction. 

By referring to the work by an internal force ( Wint = - Wext = - ∆U , see mechanics) in case of the system 

electric field - dipole, it comes out that   

 

   Win = - ΔU = - [ U(θ) - U(90
0)] = - U(θ) + U(90

0) = - U(θ) + 0 = - U(θ)      or       U(θ) = - Win          (20)       

 

The infinitesimal work dWin done by the torque (due to     field action) on the dipole momentum during a 

rotation by the angle d  is (see mechanics)                                dddW zin **                         (21) 

 

The total work made by electric field when rotating  


p   from the angle o = 90
0
  to angle  (see 18) is 

 

                          


coscos)sin(
90

9090

pEpEdpEdW zin      

 

Then, from (20)  one gets                                                                      cos)( pEWU in           (22)        

  

and in vector form                                                                                        


 EpU *)(                     (23) 

  

-The graph in Fig.9 presents the evolution of the potential energy of electric dipole depending on angle   

versus the electric field direction. It is minimum for  = 0, it is zero for  = π/2 and maximum for  = ± π.  

 

 

 

 

 

 

 

 

 

 

 

Fig. 9 

-The water molecules possess a large dipole electric moment 

(p=6.2*10
-10

C*m) and they interact strongly with electric fields. In 

microwave cooking, an external alternating field makes those dipole 

moments (and molecules) oscillate at a high frequency (~10
9
Hz). The 

water molecules dissipate this kinetic energy through all other 

molecules in the meal and this increases the temperature of surrounding 

volume (meal constituents). By contrast, the glass interacts very weekly 

with the electric field because it has not a permanent dipolar moment. 

So, it does not receive any meaningful energy for E-field and its 

temperature does not increase.  
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