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THE FLUX OF A VECTOR FIELD THROUGH A SURFACE 

As introduced previously, the direction and the magnitude of electric field vector in any location of space 

is described by the set of field lines. The field lines are not only useful for visual and general information 

about the field but, via their "flux", a specific physical parameter, they help to solve many problems, too. 

-  Assume that an uniform electric field is set in a space region and "A" is a flat surface inside this region. 

One introduces the "area vector"         which is a vector with magnitude equal to numerical value of 

area A; its direction is fixed by a unit vector    perpendicular to surface. In case of  Fig.1a,  the plan A is 

perpendicular to     field and the vector    is directed along field lines but, in general, A-surface can have 

any direction versus     field (1.b). The flux of electric field through the area A is a scalar defined  

 

Important note: The presentation of E-field lines is a qualitative presentation that gives fast information about field. 

The flux ФE of       field through an area is a quantitative measurable parameter. 

- One can calculate the flux even if the field is not uniform and the area is not flat by dividing the area 

(fig.2) into small pieces ΔAi and assuming that the field is constant on each  small area. Next, one applies     

expression (1) for each small area "i"                        and get the total flux  

through all surface as                                      
 
         (3) 

In the limit, the expression (3) transforms to                      
        

       (4)      

- The calculation of integral (4) is not difficult in the case of symmetrical fields 

       and closed areas. For closed areas, one  applies the following rule:                            

All the area vectors are normal to the surface and are directed outward (fig.3). 

One should keep in mind that the field lines that enter into a closed surface have  

90
o
 < θ <180

o
, i.e. cosθ < 0 and produce a negative flux. The field lines that go out  

a closed surface have 0
o
 < θ < 90

o
, i.e. cosθ > 0 and produce a  positive flux.        

After calculating the algebraic value of flux due to each particular component, one 

find the net flux by taking their sum (3 or 4).   

 

Fig.1a                                        Fig.1b               
as                                                           (1) 

In the case 1.a , the angle between vectors is 0
o
  

and    ΦE = EA. If the plan is not perpendicular    

to direction of field lines(1.b), the flux is  

                            ΦE = E*A*cosθ                (2) 

where θ is the angle between the field lines and 

area vector. The unit of electric flux in SI system 

is   [ΦE ] = (N/C)*m
2
   or     (V/m)*m

2 
= V*m   

Fig.3    

Fig.2    
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 THE GAUSS LAW        

The Gauss law states that the total flux of an electric  field through a closed surface is equal to the total 

(net) electric charge enclosed inside this surface divided by ε0.                   
            

 = 
       

  
   (5) 

- Ex.#1. Electric charge +Q distributed uniformly through the volume of a sphere with radius R.   

1a. Electric field outside the sphere.  From symmetry considerations, one figures out that electric field has 

a radial direction. Also, due to symmetry, at a given distance r(>R) the field vector     has the 

same magnitude. So, one may build a Gauss sphere (Fig.4) with radius "r" and apply  

the relation (5) on it. As, at any point on this surface               , it comes out that                 
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     which is the same as predicted by Coulomb’s law.     

By the same steps, one gets the expression 
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  for E-field magnitude on the sphere surface. 

 

  1b. Electric field inside the sphere.  If r < R , one can use a Gauss sphere with radius "r" .From symmetry 

considerations, one can figure out that the    -field is radial, directed outside 

and has equal magnitude everywhere on sphere surface. Similar calculation 

as in case (1a.)  give 
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  where Q(r) is the part of charge inside 

sphere with radius r. As there is uniform charge distribution in volume, one 

labels the volume charge density by "ρ" and express the sphere charge, 

depending on its radius, as      

 
         and          

 
     .   By taking 

the ratio of these two expressions  one get     
    

 
 

 
 
     

 

 
     

 
  

  
     which 

brings to             
  

  
   and    finally   to           

 

      
  .      Figure 5 shows the evolution  of 

magnitude vector        for locations " r " inside and outside the sphere. Note that E=0 at sphere center. 

This result confirms that a point charge builds a 0- field at its own location. 

 

Ex.#2. Electric charge +Q distributed uniformly with linear density  λ on an infinite long thin wire. 

From symmetry considerations, one figures out that the electric field has the 

same magnitude at all points at distance "r" from the wire and the electric field 

vector is directed from the wire "outside". Next, one considers a cylindrical 

Gauss surface with base radius "r" and side length "L". The direction of electric 

field on the two basis is ┴ to area vector. As cos90
0 

= 0 the flux on two basis is 

zero. So, the total flux is due to sides where cos0
0
=1 and  Φ = (2πrL)*E. The 

formula (5) gives               
 

  
 

  

  
   and 

      
  

        

  
 

       

   

 or            
  

       

  
   

 

     
  which is a formula we have derived previously. 
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Ex.#3.a Electric charge +Q distributed uniformly with surface density "σ " over an infinite flat plan. 

 

From symmetry considerations, one figures out that the electric field has the same 

magnitude at all points at same distance from the surface and the electric field vector 

is directed perpendicular to plane. Next, one considers a cylindrical Gauss surface as 

shown. The direction of electric field on the side of cylinder is ┴ to area vector. As 

cos90
0 

= 0 the flux on the side area is zero. So, the total flux is due to two circular 

basis where cos0
0
=1 and  Φ = 2(A*E). Next, by applying the formula (5) one gets 

                     ΦE = 2AE = Q/ε0 = σA / ε0
  
and  

 
E = σ / 2ε0   which is a formula derived previously. 

 

3b. Electric charge +Q distributed uniformly with surface density "σ" on an infinite conducting plate. 

 

In the case of a single conducting plate the charge is distributed over the 

two opposite side surfaces equally; that means the same surface charge 

density. This distribution produces zero electric field inside the volume of 

plate . By applying the Gauss law over the cylinder shown in figure 7, one 

gets ΦE = AE = Q/ε0 = σA / ε0
  
and  

 
E = σ / ε0   which is twice larger than 

the field from a charged flat plane. This does make sense because charges 

                                      on both sides of plate contribute in the same direction to the field outside  

                                      the plate. A similar calculation shows that the electric field has the same  

                                      magnitude E = σ / ε0  , close to the other side of plate . 

 

3.c In the case of a charged capacitor (fig.9), all charges in excess that come from the source are located 

only on the inner side of each plate because they are attracted from the opposite sign charges located on 

the other plate of capacitor. Each of these charged layers acts as a thin flat plane and produces an  electric 

field with magnitude E = σ / 2ε0 in the region between plates. Both these fields have the same direction 

(from "+" to "-" charges) and the same magnitude; so the resultant field is directed from "+" to "-" charges and 

has a magnitude σ/ε0. Note that inside the volume of each plate, the electric field is zero because otherwise 

it would produce motion of e- of metal plate. By using a small Gauss cylinder (see fig.9) with base area "A" 

that contains charge "Q=σA" and has Eup over the upper base, one gets            
    

 
      

     

and finally Eup = 0. So, the electric field is localized only in the region between the two capacitor plates.  

  

 
 

 

 

 

                                                                                                                                                                           

By using a small Gauss cylinder with one tap end inside and one outside (like in fig.8) one may find that   

ΦE =AE = Q/ε0 = σA / ε0
   

and  
 
E = σ / ε0   where σ is the local charge density.   So, no matter what is the 

shape, the electric field outside and close to the surface of a conductor is proportional to its density of charges at 

this location. 

Fig.7    
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 Fig.8    

Fig.9    

Ex.#4. Electric field close to the surface of a conductor 

If an excess charge is placed on a conductor, it will get 

distributed on its surface. If the surface is a sphere the charge get 

distributed uniformly at constant surface density. In other cases 

the surface density will not be constant and will depend on 

location. As explained previously, there is zero field inside a   

conductor and the external field is perpendicular to its surface. 

E=0 

E=0 

Eup 

E=0 

E= σ/ε0 

+ + + + + + + + + + + + + + + + + + + + +   

- - - - - - - - - - - - - - - - - - - - -   


