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6.1 ELECTROMOTIVE FORCE 

 

-The terminals of a charged battery contain stocks of electric charges. Those charges build electric 

fields around them. If one connects one end of a conducting wire to terminal (+), its electric field will 

attract the free electrons from the wire into the battery and produce a charge motion i.e. a current in 

the wire. This current lasts for a very short time because all the wire gets fast to potential of terminal 

and the motion of electrons stops. But, if one connects the other wire end to terminal (-) of battery, one  

gets a potential difference "V" applied on wire and a current "I=V/ R" flowing through it. Note that it  

will be a steady current in a wire as long as there is a fixed potential difference between its two ends.  

 

- If the current I flows only in one direction through a circuit (Fig. 1) one label them as a DC current 

and DC circuit. Generally, in a DC circuit, the voltage and current do not change with time. In the DC 

circuit of fig.1, the positive charges leave the higher potential (terminal +) and move through resistor R 

 

 

 

 

 

 

 

 

            Fig. 1 

 

- This external (for the system electric field - charge) action is due to a set of chemical reactions that happen in 

electrolyte. In a lead–acid cell, one has immersed a  PbO2  plate  and a  Pb  plate  into an aqueous 

solution of H2SO4. The action of strong electric field due to electric dipole moment of H2O molecules 

in solution dissociates some of H2SO4   molecules into positive ions (H
+
) and negative ions (HSO4

-
 or 

SO4
2-

 ). Next, due to chemical affinity of those ions with PbO2 and Pb plates,  the following reactions 

happen in solution at the interfaces between the electrolyte and plates:  

 

 

 

 

 

     

 

 

 

 

 

keep uniform density through electrolyte by bringing other ions close to plates " i.e. by moving them 

against the electric potential barrier inside the battery". In an open circuit situation, the chemical 

reactions at interfaces of plates stop when the charge on plates gets such that the related electric field 

blocks further approach of ions versus same sign plates. For a lead battery, this corresponds to the 

potential difference 2.05V between the two plates in open circuit (a 12V battery contains 6 pair of plates).  

 

-Once one switches a charged battery into a closed circuit, the " + " charges will go, via the circuit, 

into the terminal "-" ( or electrons into terminal "+"). This decreases the net charge of each terminal and the 

related internal electric field at plate interface. As consequence, more ions move close to the plates and 

the rate of chemical reactions increases instantaneously. These moving ions transport  " + " charges 

+ 

- 

I 

R toward the lower potential(terminal -). Once inside the battery, the positive 

charges have to move from the lower (-) to the higher (+) potential so that 

the current in the circuit be steady. The electrostatic field inside the battery 

is opposite to the direction of motion for (+) charges; so, it tends to block the 

current. The fact that current goes on, means that the positive charges 

overcome this electrostatic potential barrier ("hill") inside the battery. How 

does this happen? There is only one answer; the action of pulling them up 

the barrier is provided by external (non-electrostatic) sources of energy. For a 

common use battery, the external source contains "chemical energy ". 

At  PbO2 plate:  OHPbSOeHSOHPbO 2442 223  
     (1) 

  So,  (2e-)  are removed from   PbO2 plate and  it becomes Terminal “+”     

At  Pb plate    :  
  ePbSOSOPb 24

2
4                                 (2) 

   So,   (2e-)  are stored at  Pb plate  and it becomes Terminal “-”                
So, the first reaction " stores q = +2e " on plate " + " while the second 

reaction " removes q = +2e " from plate " - ". The charged plates build 

in electrolyte an electric field that pushes ions away from the same sign 

plates and reactions (1, 2) decrease the concentrations of ions around 

the plates. This effect is opposed by diffusion processes which tents to   
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toward  " + " plate   and   " - " charges toward " - " plate. This means a current (in direction of  motion of 

"+"charges)  from the lower potential to the higher potential inside the battery (Fig.2).  Very fast, the 

rate of chemical reactions  get set to a value that fits to the principle of charge conservation condition: 

 The magnitude of current must be the same outside in circuit and inside the battery.  
 

- From electric modelling point of view, the chemical source (external source to the system field-charge) 

provides an external work that moves the positive charges uphill the electric potential inside battery.  

The work provided by a non-electrostatic source to shift the charge +1C from the lower potential to 

the higher potential terminal is known as emf
1
 and is presented by the symbol Ɛ [J/C i.e. volts]. 

When moving a charge +q  uphill the potential difference, the emf source achieves the external work  

              

                                                                   Wext = Wemf = q * Ɛ                                                       (3) 
 

- Both, the electric potential and the emf are related to the work done during the displacement of +1C 

charge but they have different physical origin and they shift +q charge in "opposite senses". The source 

of electric potential is the electrostatic field while the source of emf  Ɛ  is a non-electric phenomenon.     

In an active electric circuit, there is one emf, at least. It provides the charge distribution at origin of  

the electrostatic field which drives the current through the circuit. Note that the source of emf is not 

always chemical. It may be magnetic (electric generator), mechanical (Van de Graff generator), etc.. 

 

- When a charged battery is part of an open circuit, there is a potential difference
2
 Vopen = (V 

+
 - V 

-
) 

between its terminals. In this case, if there is a shift of the charge +q  from "-" plate to "+" plate, the 

non-electric emf   source would provide the positive amount of work          Wemf = Wext = q * Ɛ           

which goes to increase the electrostatic energy of battery  by     U = q*( V 
+
 - V 

-
 ) = qVopen.    

   

 So, as    Wemf = Wext = U             q * Ɛ = q (V 
+
 - V 

-
 )         Ɛ = V 

+
 - V 

-
               Ɛ = Vopen       (4) 

 

- In the closed circuit shown in Fig.1,  the voltage V  applied  between the ends of the resistor R is 

expressed as  V = I*R  (Ohms' law)  and it is equal to that on battery terminals. So, considering an   

ideal source  (without internal resistance), one would find                  Ɛ = V = I*R                            (5) 

Relation (5) tells that, in a closed circuit containing an ideal source emf and a resistor, the potential 

rise (Ɛ ) inside source due to emf  is equal to potential drop (I*R ) through the resistor in the circuit. 

A real battery in a closed circuit gets heated. This shows that it has a resistance-like behaviour, or in 

other words it presents an internal resistance to the current. So, it comes out that a real source in a 

circuit is equivalent to an ideal source plus a resistance (r) in series (Fig.3). In this case, one part 

 

 

 

 

 

 

Fig.3 

 

Relation (4) shows that one can get Ɛ  value by Vopen measurements. For a real battery in a circuit    

with a resistance R (fig.1), the relation (5) transforms to    Ɛ - I*r = Vclosed ≡  VR = I*R                 (7)                                          

          and                         Ɛ =  I*r  +  I*R =I* (r +R)                             I  = Ɛ/(r +R)                   (8) 

                                                 
1
 “Electromotive force”. This wrong nomination (because Ɛ  is energy/charge and not force) remained for historical purposes.   

2
 In an electrical circuit, one uses the notation Vab = Va - Vb , where Va  > Vb  

 

of potential rise provided by emf Ɛ  is spent to compensate for 

the drop of potential  ΔVr = I*r  through the resistance and only 

the remaining difference (Ɛ - I*r) applies to the circuit outside 

the battery. So, the potential difference at terminals of a 

battery in a closed circuit (Vclosed) is smaller than its emf Ɛ. 

 

                                   Vclosed = Ɛ - I*r                                      (6)     

r 
Ɛ 

V 

I I 
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6.2 KIRCHHOFF RULES 

 

-These are two basic rules that one apply to calculate the current and potential values in electric  

circuits. Actually, these rules are expressions of conservation laws for charge and energy in a circuit. 

   

 

I1                                  I2 

 

 

I3                           I4       

  

Fig.4 

 

- In a real circuit one may identify several loops (three loops and two junctions in Fig.5).   

                                                              

 

 

 

 

 

Fig. 5 

 

-The Fig.6 shows the graph of potential evolution into a simple circuit. Note that one takes as zero
3
 the 

potential of   terminal “-“ and it remains constant along an ideal wire (R wire ≡ 0 ohm), i.e. VA= VF = 0. 

 
   Fig. 6 

 

- When applying the second rule, one may select the circulation sense in loop the way one likes.    

  
 

 

                                                 
3
 - In a circuit that contains more than one source, one assigns V = 0 to the (-) plate of one of them.  

  - If a point of circuit is grounded, one assigns V = 0 at this point. 

- A real circuit may contain several junction (Fig.4) points.  

First Rule: The algebraic sum of currents that enter and leave a 

junction must be zero.  One considers positive a current that enters the 

junction and negative a current that leaves the junction.  

Essentially, this rule express the fact that the charge cannot get stocked 

or created into a circuit junction. The charge quantity that enters the 

junction is equal to that leaving it (charge conservation law). 

Second Rule: The algebraic sum of potential changes along a closed 

loop is zero. Remember that the potential V at a location corresponds to 

the potential energy of +1C charge at this location. As the potential 

energy depends only on the location, it comes out that after the 

circulation through a loop, it gets the initial value; Vend = Vinit and V = 0; 

This is the energy conservation law applied for a charge 1C.  

 

One may refer to the energy of +1C charge while moving 

around the loop to prove the second rule of Kirchhof. 

When entering the terminal "-", this charge has only drift 

kinetic energy; its potential energy is zero (VA=V- = 0). 

It gets the potential energy Ɛ (VB(=VC)= Ɛ) while passing 

through the battery. It looses one portion (Vr =I*r) of this 

energy inside the battery due to internal resistance r. It 

keeps the same potential energy through the wire till the 

resistor R. It looses the potential energy portion     

(VR=I*R) into resistor and gets to potential energy VF=0. 

Meanwhile, one has to remember that 

the potential decreases following the 

direction of current and increases 

along the opposite direction (see fig.7).   

Fig.7 
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6.3 COMBINATIONS OF RESISTORS 

 

- Often, it is useful to know “ the equivalent resistor to a set of resistors into a circuit ”.  To find the 

equivalent resistor one starts by grouping them into sets of resistors in series and resistors in parallel. 

 

    a) Resistors in series in a circuit. 

 

   

 

     

 

 

 

 

 

Fig 8 

 

 

     As the total potential drop (V) between points (1- 4) is the sum of two consecutive potential drops; 

 

                               eqRIRRIRIRIVVV *)(*** 212121                                  (9) 

 

    So, 21 RRReq  .        For N resistors in series one gets                               



N

i

ieq RR
1

              (10) 

    Remember that if   Rlarge   is the largest resistance of the set, then  Req  > Rlarge.  

 

 

    

     b) Resistors in parallel in a circuit. 
           

 

 

 

 

 

 

 

 

 Fig.9 

      

    By substituting at (11) one gets    
212121

111
)

11
(*

RRRRR
V

R

V

R

V

R

V
I

eqeq

          (13) 

  For a set of N resistors in parallel one gets the equivalent resistor value as          



N

i ieq RR 1

11
       (14) 

 

   Remember that if  Rsmall  is  the smallest resistance of the set, then  Req  <  Rsmall.  

 

 

   I2 

   I1 

I 

I2 

I1 
I 

If two resistors in series are connected to 

the battery, the difference of potential 

between terminals (V) applies to the  end 

points (1,4) of set and the same current 

passes through each resistor. Ohm’s law 

tells that, following the current sense,  the 

potential drops by  I*R1 between points 

(1-2), remains constant in wire section 

(2-3) and  drops by I*R2 in section (3-4). 

V1 
V2 

 

R1 R2 
 1 4 

  V 

 2  3 

In this case, the first Kirchhoff’s rule gives: 

 

                        I = I1 +I2                                  (11) 

 

Next, one expresses the current at each resistor 

through the potential drop at its ends (the same V)  

             
2

2

1

1 __
R

V
Iand

R

V
I                      (12) 

I 

R1 
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6.4 DIRECT CURRENT INSTRUMENTS 

 

- The Ammeter is an instrument that measures the current passing by a given point of circuit. This 

device has a very low resistance. One measures the current by introducing the ammeter in series with 

the circuit (Fig.10) at the point of interest. As its resistance is very low, its introduction in circuit does 

not alter significantly the current in circuit; the value given by the instrument is practically the same as 

the current in the closed circuit without ammeter.  

 
                  Fig.10 

 

-One uses a voltmeter to measure the potential difference between two points in a circuit. This type of 

instrument has a very large resistance. To measure the difference of potential between two points one 

has to insert the voltmeter in parallel to the part of circuit between these two points (Fig.11). 

 
                   Fig.11 

 

- One uses an ohmmeter to measure the resistance. This instrument contains a battery Ɛ, a variable 

resistance Rs and one ammeter A (Fig.12) with resistance RA. In fact, this instrument measures the 

current but its scale is calibrated to corresponding values of resistance. When one selects a given 

range, Rs is set to a fixed value. If one would connect the terminals and produce " a short or court-

circuit  ", one would measure the current that corresponds to the resistance RA+ Rs in circuit 

                                                           

                                                              I0 = Ɛ  / (RA+ Rs)        RA - ammeter small resistance               (15) 
If one court-circuit the two terminals of ohmmeter, its reading (or the needle) will go to the maximum (end of scale).   

   .  

                      Fig.12 

 
     - Galvanometer.  Both old versions of voltmeters and ammeters have a needle and their function was based on a sensitive  

      current measuring device  called a galvanometer.  A galvanometer is characterized by two main parameters;  its resistance  

     (very low) and the current value that produces a maximum scale reading (or maximum needle deflection).   

     To convert a galvanometer to a voltmeter, one connects a large resistance in series and gets a device  with large resistance.   

     To convert a galvanometer to an ammeter, one connects a low resistance (called the “shunt” resistance) in parallel in  

     order to get a device with a very low resistance. 

Example.  Consider that a closed circuit contains an ideal source with 

Ɛ =12V  and a resistor with R = 20Ω . The current in circuit without 

ammeter is I = 12/20 = 0.6A. If we use an ammeter with Ram= 0.1Ω the 

current becomes I1= 12/20.1= 0.597A, i.e. only 0.003A smaller. This 

means an inaccuracy (0.003/0.6)*100%= 0.5% which is inside range of   

precision ε = ( 0.5÷1)% used in  general for electric measurements. 

Note that to change the scale range of an ammeter, one changes the 

value of Ram so that it keeps the similar accuracy of measurements.   

As the resistance of voltmeter is large, its introduction does not affect 

significantly the current in circuit. Thus, the potential drop to the resistor   

R (V=I*R) is essentially the same as if the voltmeter were not in circuit.  

Example: For a  12V  source and   R = 20Ω  in circuit,  I = 12/20 = 0.6A. 

When using a voltmeter with  R=10KΩ,       1/Req = (1/20) + (1/10
4
) = 0.0501        

Req = 1/0.0501 = 19.96Ω    and   I1=12/19.96 = 0.601A.   As the current  

through voltmeter is 12/10000 = 0.012A, it comes out that the current 

through the resistance R is practically unchanged (0.601-0.012~0.6A). 

Next, with R in closed circuit       IR = Ɛ  / [(RA +Rs)+R]       (16)     

 

With R is in circuit, IR < I0   and the reading falls inside the scale. 

The measurement is based on the “difference” (I0 -IR) and appears 

as resistance R in (Ω) on the pre-calibrated scale of instrument.  
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- The potentiometer is a device that provides different V- values by " dividing " a given potential 

difference Vmax . It is often used as part of scheme given in fig.13 to measure the emf of a battery. 

  
Fig.13                                                                           Ɛs  - I*Rs = 0                                           (17) 

 

Next, one switches in the circuit the unknown battery with emf Ɛx  and fits anew sliding for no current 

through galvanometer G. In this case the 2
nd

 rule of Kirchhoff will give      

 

                                                                                   Ɛx  - I*Rx = 0                                             (18) 
 
Note that the current I through the section OP is the same in the two cases because there is no current 

coming from εs, εx sources in the “small circuit” that contains G.  So, by isolating I  at (17-18) one gets   

 

                     I = Ɛs / Rs  = Ɛx / Rx                        and                         Ɛx = Ɛs * Rx / Rs                            (19) 

 

Then, as Rs = ρ*Ls /As  and  Rx = ρ*Lx /A x , it comes out that           Ɛx = Ɛs * Lx / Ls                           (20) 

 

 

6.5 RC CIRCUIT 

 

- When a capacitor is connected to a battery in a closed circuit, the electric charges continue to store onto 

its plates until its charge gets to a certain maximum value Qmax. So, at a given time " t ", there is a charge 

q(t) and a  potential difference  υ(t)= q(t) / C  between its plates. Once the capacitor gets the charge Qmax  

the current through the circuit stops; the potential difference between its plates becomes equal to ε and the 

charge of capacitor Qmax = C*ε.  Let’s analyze this process for the circuit in fig.14, i.e. a circuit with an 

ideal emf source ε  and a capacitor C  in series with a resistor R. In the following, the quantities that do 

change with time are noted by lowercase letters and  those  that do not change by uppercase letters. 

 

a) CHARGING THE CAPACITOR ( in a RC in series circuit) 

 
                R   

i                                           

                                            ε 
               
 

 

 Fig.14    C 

 

One can rewrite relation (21) in the form     iRCqCorRiCq )(__0/                    (22) 

Ɛw  supplies a current through a variable resistance R 

(≤ 1m long slide wire) and one can get out variable 

values of potential difference through points OP. The 

galvanometer G (sensible ammeter for small current) 

is at first connected to standard battery Ɛs (Cd cell 

1.018V). One fits sliding for no current through G . 

The 2
nd

 rule of Kirchhoff applied for the small loop 

that contains Ɛs  and the galvanometer G gives              

+ - 

By using the 2
nd

 Kirchof’s rule we get        ε – υC  – υR  = 0          (21) 

 

 υC = q / C  is the potential drop through the capacitor (q is the charge 

in capacitor) and υR = R*i  is the potential drop in resistor at time " t ".  
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As  dtdqi / , eq.22   takes the form  dtdqRCqC /)(*  .   As  C*ε = Qmax charge of capacitor, 

one can rewrite it as    )/()/( max RCdtqQdq      or     )/()/()(
maxmax

RCdtqQqQd   

 

After noting  Z = Qmax – q  and  taking  the integral of both sides as   dtRCZdZ )/1(/    one gets 

 

kRCtZ  )/(ln   or  kRCtqQ  )/()ln(
max

 where k is a constant. At t = 0 the charge of  

 

capacitor is zero "i.e. q(0) = 0 " and this brings to  kQ maxln  . 

 

 Hence, one rewrites the last expression as  

 

RCtQqorRCtQqQorRCtQqQ /)/1ln(__/]/)ln[(__)/(ln)ln(
maxmaxmaxmaxmax



 

From last expression,  )/exp(1/__)/exp(/1
maxmax

RCtQqorRCtQq     which can  

 

be written as                                                                                        (23) (graph 15.a) 

  

by introducing the " time constant "      τ = RC    of the circuit that contains RC in series.    

   

                                                                                                                           

 

 

q                                                                                                       i 

 

 

 

 

 

 

 

 

 

 

Fig.15.a                                                                                             Fig.15.b 

 

 

At  t = τ  the charge in capacitor plates gets to  maxmaxmax 632.0)73.2/11()/11()( QQeQq   

 

From expression (23) one may get out the evolution of current in the circuit.  As i = dq/dt it comes out  

 

that )/exp()/()/exp(/*)/exp()/)((/
max

 tRtRCCtQdtdqi   . 

 

 Noting   Imax = ε / R     one gets   the expression          )/exp(
max

tIi                     (24) (graph 15.b) 

 

Graph of current in the circuit during  

the charge  of capacitor (expression 24). 

 

Graph of charge in the capacitor during  

the charge  of capacitor (expression 23). 

 

t 
τ 

t 

Qmax 

τ 

0.632Qmax 

Imax 

0.368Imax 
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b) DISCHARGING THE CAPACITOR ( in a RC circuit without emf ) 

 
                       R                                                        

 

 
                                                      
 

 

 

 

One can rewrite relation (25) in the form                     iRCqorRiCq  /__0/                       (26) 

 

Substituting dtdqi /   to eq.26,  it takes the form   dtdqRCq //    which can be transformed      

to  )/(/ RCdtqdq   .   One takes the integral of both sides        dtRCqdq )/1(/    and get 

 

kRCtq  )/(ln   where k is a constant.  Knowing that at t = 0  the charge of capacitor is  q = Qmax  

one  gets    kQ maxln   and  the  last expression can be  written   as   )/(lnln
max

RCtQq      or 

 

RCtQq //ln
max

  and  )]/exp(
max

RCtQq   which is written as   )/exp(
max

tQq      (27) 

 

For t = τ  one gets q = Qmax / e = 0.37Qmax. The " half-time" noted as " T1/2  " is the time it takes for the  

 

charge of capacitor to get to half of its initial value (q = 0.5Qmax);  so,  Qmax  / 2 = Qmaxexp( -T1/2 / τ ) 

 

and  exp(T1/2/τ) = 2  which brings to  T1/2/τ = ln2 = 0.693 .  So, one gets             T1/2 = 0.693*τ             (28)   

 

Bearing in mind that during the discharge of capacitor the current in circuit is   i = - dq/dt,   from           

 

the expression (27) one gets )/exp()/(/
max

 tQdtdqi   and as τ = RC it comes out that 

 

)/exp()/()/(exp*)/(
max

 tRtRCQi  .  As ε / R = Imax we get  )/exp(
max

tIi    (29) 

 

Note that for t = τ  one gets  i(τ) = Imax / e = 0.37Imax  and  for t = T 1/2   i( T ½)  = Imax e 
- 0.693  

=  0.5Imax 

 

 

 

 

 

 

 

 

 

 

 

 
Note: Assume that one records a positive current in ammeter during the capacitor charge. Then, during the 

capacitor discharge, the current in circuit has opposite sense and the ammeter will record negative values of 

current. In this case, the graph of current would appear as the reflected of this in fig.17 versus the axe of time.    

i 

By using the 2
nd

 Kirchof’s rule one gets            υC  – υR  = 0             (25) 

 

υC = q / C  is the potential jump through the capacitor terminals  

and  υR = R*i   is the potential drop through the resistor at time " t ".  

Fig 16 

Evolution of current magnitude the circuit 

during the discharge  of capacitor (exp. 29). 

 

Fig.17 
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Imax= ε /R 
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