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7.1 THE MAGNETIC FIELD 

 

- If one pours a powder of iron particles around a permanent magnet (natural "lodestones" or manmade) an 

ordered pattern appears (fig.1). One can easily discern the presence of lines that become very dense at two 

magnet extremes (called poles). One says that a magnet builds a magnetic field in the space around it and 

the alignment of iron particles "just makes visible" the magnetic field lines.  

   

- The nomination of magnetic poles comes from this arbitrary definition:  If one hangs the mid-point of a 

magnet by a string and leaves it horizontal, it will get always aligned close to direction north-south. The 

magnet pole that seeks the earths geographic North is called north magnetic pole "N"; the other one is 

called the south magnetic pole "S". As the experiments show that "N" pole of a magnet repeals "N" pole of 

another magnet and attracts its pole "S", it comes out that earth has its own magnetic poles and the 

magnetic pole "S" of earth is located somewhere around its geographic north. 

   (  https://phet.colorado.edu/sims/cheerpj/faraday/latest/faraday.html?simulation=magnet-and-compass )                                                                                         

It’s important to note that: 

  a) The location of poles "to the extremes" of a permanent magnet is somehow un-precise. 

  b) If one cuts a magnet in two pieces, each of the two pieces acts as a magnet with two poles "N" and "S".     

  No one has observed a monopole magnet, yet.                                                                                                                 

These experimental facts pushed towards development of a slightly different (compared to that of electric fields) 

theoretical model for the study of magnetic action. Michael Faraday observed closely this type of field and 

had the idea to start the definition of its parameters from its field lines (instead of "charges " at electricity).                     

 

- The theoretical model for magnetism is based on "magnetic field lines" and the "magnetic field vector ". 

a) The magnetic field lines are closed loops. In the space around the body of a magnet, they get out of 

pole N and into the pole S. Inside the magnet body, they are directed from pole S to pole N (fig.2).  

b) The magnetic field vector ),,( zyxB


is the measure of magnetic field action at location (x, y, z ) of 

space. It is tangent to the field line passing by the point (x, y, z ), it is directed the same way as this 

field line and its magnitude (field strength) is proportional to the local density of field lines i.e. the 

number of field lines crossing 1m
2
 area perpendicular to line direction at this point. 

 

                         
   Fig 1                                                                    Fig 2 

 

If one passes a plane P perpendicular to direction "N–S" and midway between poles (see fig 2), the lines of 

magnetic field will go into it (or out it) along the normal to this plane. If one observes the plane P from pole 

"N", one will see the field lines entering this plane. In the following we will draw a cross “ x ” to show a 

field line going into the plane and a dot  “ • ”  to show a field line going out of a plane versus observer. 

 

      Experimental fact:  The magnetic field  exerts a force on an electric charge in movement. 

- Remember:  One defines the electric field at a space location i.e. vector


E , by electric force exerted on an 

isolated charge +1C at rest at this point (           ) . One would prefer to apply a similar definition for 

P 

https://phet.colorado.edu/sims/cheerpj/faraday/latest/faraday.html?simulation=magnet-and-compass
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vector 


B   but there is no isolated magnetic charge ( “magnetic charges” exist only in couple, as a dipole N – S ). 

For this reason, one defines the magnetic field vector 


B  by referring to the magnetic force exerted on an 

electric charge moving inside the magnetic field. 

The experiments show that, when a particle with electrical charge " q " and moving with  velocity 


  

enters into a magnetic field area, a particular type of force BF


  named " magnetic force " applies on it.   

 

- The measurements confirm that the magnitude of this force  is              sin~


qF B             (1) 

            

 

 

 

 

               Fig.3 

 

 

- Also, the experiments show that the magnitude of the magnetic force is proportional to the density of 

magnetic field lines. But, the density of field lines is proportional to local field strength, too. 

         So,  one has                                                            


BF B ~                                                       (2)      

       and by selecting                                 sin),,(


 BqzyxFB                                                   (3) 

      one can get the magnitude of field vector 


B  from expression     sin/ qFB B                       (4) 

 

- The experiments show that  BF


  is directed  perpendicularly  to the plane defined  by vectors  


 , 


B  and its orientation is that of the vector product 


 x


B . So, simply put, it comes out that  

 

                                                                 


 BxqFB                                                                           (5)   

 

 

 

 

 

        Fig. 4 

                                                   

  

  Note: The magnetic field does not achieve work on a charged particle moving inside it because   

             all time,


BF  and the displacement


s  has same direction as 


 .  So 0* 


sFA B  

The unit of magnetic field strength (B-vector) is derived from expression (4); so, it is a derived unit.  

The SI unit of magnetic field strength is "Tesla".   One deals with  B = 1T  if  the magnetic field exerts a  

force  with magnitude 1N on electric charge +1C moving  at  1m/s  along a direction  perpendicular to 


B . 

So, 1T =1N/(C*m/s) = 1N / (C/s)*m = 1N/(A*m).  But, the commonly used unit is “gauss” 1G =10 
–4 

T. 

where θ  is the angle measured from the velocity 


  direction onto 

the direction of local magnetic field lines. There is a zero force if 

the charged particle enters the magnetic field area along the field 

lines and a maximum force when it enters perpendicularly to them; 

this effect is included in expression (1) by sine function. 

 

 

- 


B  direction is defined by direction "S    N " of a compass. 

- The direction of 


BF  is defined by the rule of vector  

   product (right hand or bottle cap rule) and the sign  

   of charge ( q must be taken with its algebraic sign). 

θ 





 



B  



BF  



  

θ 
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IMPORTANT:  
       a) One defines a magnetic field without making reference to its sources.  

           From the first step, the magnetic action is counted as a field action. 

                         

     b) The definition of magnetic field vector is related to electric charge. This is a first 

   sign about a profound relation between the electric and magnetic phenomena.  

 

 

7.2 ACTION OF MAGNETIC FIELD ON A CURRENT HOSTING CONDUCTOR 

 

 

- Let’s calculate the magnetic force exerted on a wire with section "A" and length "l" carrying the current 

"I" when it is placed perpendicularly to direction (sign "x" in fig.5) of a uniform magnetic field 


B .  If there 

is no current in wire, the free electrons move irregularly and the net magnetic force exerted on the wire is 

zero. But, if there is a current in wire, all electrons have the same ordered drift velocity 


D  and on each of 

them is applied the same force (magnitude and direction)  . The sum of magnetic forces exerted on each of 

them is transmitted to the whole wire. The magnetic force exerted on each electron is    

    

                                                                                                             (6) 

 

   
                            Fig.5 

    

    

with magnitude  "l = wire length" and same direction as that of current (i.e. of positive charges or "     ").  

Remember that the magnetic force     on a wire that hosts current is always perpendicular to wire and  

 the magnetic field 


B . The magnitude of this force does depend on the angle between them, though. 

 

 

7.3 MAGNETIC FIELD ACTION ON A LOOP HOSTING CURRENT  

 

- What happens when a wire with current, shaped as a loop, is placed inside a uniform magnetic field ?               

The direction of exerted magnetic force will change from one piece of wire to another due to change of 

direction of  " 


l " vector.  Let’s consider closely the case of a wire with current " I "  shaped as a plane 

rectangular loop with sides a, c  and placed inside the uniform magnetic field 


B .  When the plane of the 

loop is perpendicular to 


B (directed versus the observer in Fig.6), the directions of magnetic forces on each of 

wire sides are such that would tent to stretch the loop. If one rotates CCW the loop plane by the angle " α " 

around two central points (S, S’ ,see Fig.7), the exerted forces on the upper and lower sections will follow 

stretching the loop. But, the forces exerted on c-sides (besides  stretching) have a component that builds up a 

torque tenting to rotate the loop versus the orientation  where its plane is perpendicular to 


B  vector. 

If the volume density of free electrons in wire is "n", there are 

"n *A*l " such electrons in a length "l" of wire. The force (6) applies 

on each of them. So, the net magnetic force on length "l" of wire is  

         

                                                   
 

and   finally                                                         (7)        

where              is the current magnitude  and 


l is a vector 
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  Fig. 8 Observation of rotated loop from upside (S´S direction)                                                             
             All angles shown by a small arrow are equal to α . 
                                                             

                                               
            

 

 
 = 0.5*(ac) * IBsinα                                    (8)  

 

The rotational action of the two lateral forces produces the net torque about axis SS’ with magnitude 

 

                                                                                                                 (9) 

                                                             "A=ac" is the area of loop  

 

-We derived the expression (9) for the case of a single rectangular plane loop. Similar calculations show 

that the same expression is valid for any shape of a plane loop. On may figure out easily that if a set with    

N  loops  is placed inside a uniform magnetic field, the net torque exerted on the set has the magnitude  

 

                                                                    sin* AIBN                                                             (10) 

 

- Actually, one uses a more compact way to express the action of magnetic field on current hosting loops.  

One starts by defining the loop unit vector 

n , perpendicular to loop plane, placed at its center and directed  

as the thumb in right hand rule (other fingers curled in current sense, see fig. 9). 

 

 

 

 

 

 

 Fig.9 

  

Next, one defines the magnetic dipole moment  of a set of N plane similar loops 

(of any shape) , each loop with same area A     as               


 nNIA              (11) 

 

Then, one expresses the net torque on the set of loops hosting current by a cross 

product as                                                                   

                                                                     


 Bx                                     (12) 

Figure 6 (Loop plane perpendicular to field) Figure 7 (Loop plane not perpendicular to field) 

Initial orientation of loop plane was    ┴  to     direction (seen from upside) 

The magnitude of each lateral force is  

IcBFB  .   Its rotating component is 

sinBFF   (see fig. 8) 

As its lever arm is 
2

a
, the related torque 

action of the force on one side of loop is          

   

I 
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- The expression (12) is similar to that of the torque (


 Exp ) exerted on an electric dipole 


p  inside an 

uniform electric field 


E . We found the expression              for the potential energy of electric dipole 

inside an electric field by using the work done by the torque 


  (due to electric field) for the rotation of the 

dipole 


p .  The reference U = 0 corresponds to the angle 90
0
 between the vectors 



p and


E .   By applying 

exactly the same procedure one gets the expression                                                                   (13) 

for the potential energy of magnetic dipole moment 


  inside a magnetic field 


B . Note that this energy is :   

                                          - zero for  


 B  (angle 90
0) and this is an " unstable orientation "; 

                                          - negative and minimum for 


 B (angle 0
0) which is "the stable orientation ";  

                                          - positive and  maximum for 


 B (angle 180
0) which is "unstable orientation". 

 

 

 

 

Fig. 10 
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