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2.1. SIMPLE PENDULUM, ANOTHER EXAMPLE OF SHM 

 

-The simple pendulum is a physic's model used for the study of "small angle" oscillations of an object tied      

at the end of a rope. One models the object as a material point with mass "m" fixed at the end of a mass-less 

string with length "L". Next, one  assigns a positive direction (CCW in general) for the rope angle " θ " to its 

vertical position and the corresponding displacement on arch "s" counted from equilibrium(as shown in fig.1). 

Also, one neglects the air friction effect. 
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Figure 1 

 

 

For small angles, sin θ ~ θ and relation (5) transforms to       
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This equation fits exactly to equation of a SHM if one assigns           θ = x          and          
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Then the phasor attached to the oscillation of the "displacement = angle θ " rotates at a circular frequency 

L

g
 .  Also, from the results of SHM modelling, one derives that: 

 The pendulum angle "θ" oscillates as a harmonic function of time given by expression 
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 The period of these oscillations is          
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Notes:  a) Equation (6) tells that the "displacement θ " oscillates as a SHM with a period 

                    " T " given by expression (9).  

        b) Do not mix the pendulum angle θ  with the phase angles (Ф(t) = ωt + φ0, φ0) 

        c) The translational velocity of mass "m" is υ = L* dθ/dt  because  s = L*θ (see fig.1). 
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By applying the second law of Newton for the rotation of particle 

around an axis Oz normal to page and passing by P-point, one get      
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By projecting eq.(1) on Oz axe (pointing out of page)  one get   
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the relation (2) becomes          
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Next, after cancelling  "m" and "L"    
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Example-Pendulum    Given that the angle to vertical of a simple pendulum with mass 0.5kg changes in time     

as                             
 

 
   find:   a) The period of oscillations;     b) The length of  pendulum;     

c) the maximum angle reached in degree;                          d) the position and linear velocity of bob at t = 0                                

e) kinetic energy of bob when the angle is  θ = 0.2rads ;    f) total mechanic energy  of pendulum 

 

 

 

 

 

 

 

 

v(t)  = ds/dt  =  d(L*θ) / dt = Ldθ/dt =3.97* 0.5*(-0.5π)sin(0.5πt+π/2)  =  -3.12sin(0.5πt+π/2)≡ -3.12sinφ(t)  (*)                                             

Then, at t=0 one gets v(0) = -3.12sin(π/2)= -3.12[m/s]. As υ < 0 the bob starts its motion left side.   

 

e) K(θ = 0.2r) = m*v
2
(θ=0.2r)/2 = 0.25* v

2
(θ=0.2r).  So, one has to find v-value when  θ = 0.2r.                                           

One starts by finding the phase  φ(t)  that corresponds to θ = 0.2r ; then, one calculates the expression (*) for 

this value of phase.  Starting by 0.2 = 0.5cosφ or cosφ = 0.2/0.5 = 0.4, one gets φ = arscos0.4 = +/- 1.16[r]   

Next, one uses this phase at (*) and gets  K(θ=0.2r) = 0.25*[-3.12sin(+/-1.16)]
2
= 2.04 Joules 

 

f)  Two ways   f.1) E = Kmax = K(θ=0r) = (0.5/2)*v
2

max = 0.25 *(3.12)
2
 = 2.4 Joules                                                                                

      or    f.2)  E =Umax=  U(θmax) = mghmax = mgL(1- cosθmax) = 0.5*9.8*3.97(1- cos0.5r) = 2.4J.              

    Note that hmax = L - Lcosθmax =  L(1- cosθmax)  

 

2.2 DAMPED OSCILLATIONS 

 

-In SHO and SHM models ( S stands for simple) there is no energy loss with time and oscillations "continue to 

infinity". But, in a real system, due to the friction with surrounding medium, after a certain time, oscillations 

will stop. This damping effect appears as a decrease of oscillations energy and (as A~E
1/2

) amplitude with time.  

 

-One may model the damping effects by referring to oscillations of a spring-block system when the block is 

moving inside a liquid(fig.4). One knows that, in this case, the liquid exerts a drag force on the block. The drag 

force is directed opposite to direction of block motion (i.e. opposite to velocity) and, for moderate speed, its 

magnitude is proportional to magnitude of velocity. So, one gets 
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b[Kg/s] is the damping constant of liquid on block oscillations  
υ[m/s] = dy/dt is the block velocity,    -unit vector along Oy axis. 

 

Then,                           
  

  
         

  

  
       

(    action is canceled by        of spring extension at equilibrium - see ex.#2 at lecture#1))     

and the second law of Newton       


 amF ETN           projected on 

Oy axis takes the form           
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a)  ω = 0.5π .  So, T = 2π/ω = 2π/0.5π = 4sec. 

b) ω
2 

= g/L.   So,  L = g/ ω
2 

= 9.8/(0.5*3.14)
2 

= 3.97[m] 

c)  From function θmax= 0.5[r]= 0.5[r] *(180
o
/3.14[r])= 28.66

o
 

d) At t= 0s  θ(0) = 0.5cos(0+π/2) = 0.5cos(π/2)= 0[r] . 

    The linear(or translational) velocity is calculated from the displacement. 

So, one should refer to the translational displacement "s" from lowest level 

 (where s=0) and counted as "+"  to  the right side.   As  s = L*θ , one get 

L 

s 
h 

θ 

Fig 4 
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One can see that the equation for the SHM of block-spring system 
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in presence of damping. In general, one rewrites (12) in form 

 

                                       
   

   
     

  

  
                                                                                           (13) 

 

The mathematical equation of type (13) is valid for all damped harmonic oscillations "DHO" (mechanic, 

electric..,)  and it is very well studied. Its oscillating solution is an harmonic function which amplitude 

decreases exponentially with time(see its graph in fig.5).  

 

Essentially, the " displacement " function for a DHM has the form: 

 

                         (14)  where the damped amplitude is                          
                   (15)      

 

By substituting (14) and (15) in (13) one  gets out that decay constant λ     is       λ = b/2m                      (16)    

and   the  damped circular frequency ω' is                                                  

2

2

0
2

' 









m

b
              (17)  

Note: DHO circular frequency ’ is smaller than SHO circular frequency;        
 

 
    and   T'  > To.       

 

 

Actually, the solutions of equation (13) correspond to three types of different motions: 

  

-Under-damped  oscillations that happen if the  damped circular frequency   ω´ at  (17)   

is positive, i.e. if                                
   

 

  
 
 

       
 

  
                           (18)   

 

This is the case of oscillations that are lost with the time due to a small damping effect . 

 

 
 

Fig 5 The evolution of displacement with time in an under damped oscillation. 

 

Under-damped                      A' (t) = Ao e
-(b/2m)t

 

 Oscillations                                  T' = 2π / ω'  

b < 2mωo 

T´ 
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Critically-damped motion (no oscillations) happens when the angular frequency ω’ = 0;  
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Critical damping produces a return to equilibrium motion at the shortest time (fig.6).  

(Ex: electrical device needle). If b   2mω0 the system is "less than critical" but not really under-damped.  

So, it performs a few oscillations before stopping (ex. cars’ suspension). 

 

 

Over-damped motion (no oscillations) if the angular frequency ω’ is an imaginary number 

 

i.e. when                       
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In this case the system returns to equilibrium slowly.(ex. Heavy doors that close slowly) 

 

Figure 6      

 

 

Example-DHM. For a given under damped oscillator with m=0.5kg, k=8.5N/m, b= 0.4kg/s, find:                                              

a) The period of oscillations.          b)  How long does it take for the amplitude to drop to half of its initial value.  

c) How long does it take for the mechanical energy to drop to one half of its initial value.                                                  

d) What is the ratio (A5/A0) of the amplitude after 5 cycles to its initial value.  

 

a)    ωo
2  

= k/m = 8.5/0.5 = 17[r/s]
2
  ;                    and        

  

  
 

  

     
                                                

       As  ω'=[ ωo
2  

-  (b/2m)
2
]
1/2

                                                 and          b/2m = 0.4/2*0.5 = 0.4 ( ≡  λ) 

       ω' = [ 17 - 0.4
2
]

1/2  
= 4.104 r/s                                           and           T' = 2π/ω' = 1.531s      (>   ) 

 

b)    
  

      
  

 

  
                                  

                                                   

 

    T1/2= 0.693/0.4 = 1.73[s] .   So, after  1.73s  the amplitude is twice smaller. 

          

c) At t1        E1 = (0.5*kA1
2
 ) = 0.5Eo =   0.5(0.5*kAo

2
 ) = 0.25k Ao

2
 .  So, A1

2 
= 0.5Ao

2
  and  A1 = 0.707Ao  or       

A1 = Aoe
-0.4*t

1 = 0.707Ao .   So,  e
 0.4*t

1  = 1 / 0.707 = 1.414    and   0.4*t1  = ln1.414  =  0.346  and   t1 = 0.87s  

 

d) t = 5*1.531s  =7.655s.  So,   A(7.655s) = Aoe
-0.4*7.655

   and    A(7.655s)  / Ao   =   e 
-0.4*7.655

 = 0.0468 

 

b > 2mωo (over-damped) 

b = 2mωo 
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2.3 FORCED OSCILLATIONS 

 

- A mechanical oscillator has its characteristic natural circular frequency ( mk /0  ) which corresponds to 

its free oscillations (ideal model). In reality, there is always damping due to the different interactions and the 

system looses energy. If  b < 2mωo   ( under damped situation), it achieves a DHM  at circular frequency  

 22

0
2/' mb  and the oscillations disappear with time. If  b ≥ 2mωo  there is an over or critically 

damped situation; there is no oscillation.  

 

- One can make oscillations continue by compensating the energy loss in a periodic way. To keep a steady-state 

oscillations one must apply an external
1
 periodic force.  Note that in this case one is dealing with a FHO,  

forced (or a driven) oscillation; not a SHM or DHM.  

Assuming that the external periodic force is                                                                               (21) 

the 2
nd

 law for a driven oscillation undergoing damping  is             


 amFFF drivresel                          (22) 

 

By projecting equation (22) on an axis parallel to the direction of motion (see fig.4 ) 

one gets the expression                                  
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which can be transformed into                       
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The equation (24) is known as the equation of driven oscillations. The solution of equation (24) is not object of 

this course but the main results that come out of solution are as follows:  

 

A driven oscillator performs an harmonic motion with two main characteristics; 

a) its circular frequency is equal to that of the external driving force (ω = dr). 

b) its amplitude is maximum if  dr    ’  and it depends on the damping constant "b". 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

                                                 
1
 To the oscillating system       

A given oscillator has a given set of values (m,k,0, b). 

While 0 -value depend only on oscillator, the b-value 

depends on the surrounding mediums, too. The graphs 

in fig.7 (known as resonance curves) show the evolution 

of the amplitude of a driven oscillator  vs.  the ratio 

(dr /o) of driving frequency for different damping 

situations. All these curves present a maximum that 

happens when the driving frequency (dr) is close to 

the natural circular frequency (0) of oscillator. One 

says that a resonance is produced in a system when the 

amplitude of oscillations gets the maximum value on 

the graph A=A(ω). The resonance of the same driven 

oscillator (same k,m, 0 , Fo, dr)  is more pronounced 

(i.e. larger amplitude) for low damping (b - small) and 

may even disappear for high damping (b – very large). 
 

Figure 7 
ωdr  / ω0 


