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MECHANICAL WAVES 

3.1 GENERAL 

-Any SHO is an oscillation in time at a constant period T (and frequency f0 or ω0) and a constant 

amplitude of a "displacement" parameter (position, angle, current, pressure, density..). The simple 

harmonic motion (SHM) is a SHO where the oscillating parameter is the displacement of a particle.  

-A wave is the propagation process of a "disturbance" through a medium. The disturbance is built 

up in a limited region of medium and then gets propagated through the "medium points" (ex: ripples 

propagating on still water of a lake, sound propagation in air, radio waves propagating in space..).        

- During the wave propagation each point of "propagating medium" transports the "disturbance" to 

the next point and after a while returns to its equilibrium position. If one refers to motion of a single 

point of the medium, one may model its disturbance in time as an oscillation around its equilibrium.        

- This chapter covers the harmonic mechanical waves. In this case, each "particle" of propagating 

medium performs a SHM(or DHM or FHM). Note that a wave can propagate through a matter 

medium (object of this chapter) or through a field medium(ex. Electromagnetic field in space).  

 

3.2 MECHANICAL WAVE CHARACTERISTICS  

-Let’s consider a string kept straight with one end fixed. One up-down shift i.e. 

"disturbance" produced at the free end of string will propagate through string. 

During the propagation of this disturbance, each point of string repeats the 

displacement sequence of the free end point and then returns to its equilibrium 

position. One says that a pulse wave propagates through the string (fig.1).  

 

-From fig.1, one may note that, during the propagation of pulse, each particle of the string moves 

perpendicularly to the direction of propagation of the pulse shape. One 

says that a transverse wave (or TW) propagates through the string. If the 

particles of propagating medium move along the same direction as that of 

wave propagation,  one says that a longitudinal wave (or LW) propagates 

through the medium.  (Example: When one presses shortly on the car brakes, the 

local pressure pulse moves the brake liquid particles along the same direction as 

that of propagation for the pressure pulse).                                                                                                                                                                                                                                                              

 

- The transmission of disturbance through adjacent points of propagating medium is due to restoring 

forces acting inside it. A solid medium, due to its three dimensional lattice structure, produces 

restoring forces along three space directions and can propagate TW and LW waves. A gas medium 

can propagate only LW waves.   A liquid can transport LW waves in volume and TW waves on its 

surface (due to the surface tension action as a restoring force).                                                                                                                       

Fig.1 

Fig.2 
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- During the propagation of a mechanical wave, the particles of medium oscillate at a small 

amplitude and after a while they return to their equilibrium position. So, there is no transport of 

matter during the propagation of a mechanical wave. What parameter is propagated ? One may 

figure out this by analyzing the motion of a leaf on the still water of a lake when a TW surface wave 

propagates on lake. Initially, the leaf is at rest and it has only a potential energy which may be 

assigned as equal to zero. When a ripple (pulse wave) passes through leaf position, the leaf will move 

i.e. it will gain a kinetic energy K. When the pulse moves away the leaf returns to its initial position 

(fig.2) and its energy is zero. No energy remains to the leaf, but  there is an energy transport through 

its location.  Note that the same analysis is valid for the water particle under the leaf. So it comes out 

that a transportation of kinetic energy accompanies the propagation of wave. As linear momentum is 

related to kinetic energy by the expression mKp
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    it comes out that 

there is linear momentum propagation, too. A wave transports ENERGY and MOMENTUM through 

propagating medium.  

- In the next sections we will define the wave function. As a starting point, one may note that the 

shape of initial disturbance should be included in the wave function because this is what one can 

identify as the " propagating object " (see fig.2).  

                                                                                                                                                                                      

3.3 WAVE SUPERPOSITION 

-Let’s consider a string pulled on both ends; there is a tension along the string. Assume that one 

builds up simultaneously two pulse disturbances on its both ends. These two pulses will propagate 

along the string and at a given moment they will overlap; it happens a SUPERPOSITION OF 

PULSE  WAVES.  What happens to the medium particles located at a region where two waves 

superpose? Here it works the PRINCIPLE OF LINEAR SUPERPOSITION: If the first wave alone 

would produce the displacement y1 and the second wave alone would produce the displacement y2, 

then, the net displacement of the particle will be     y = y1+y2   .    In general, if a set of waves with 

displacements y1 , y2, y3, y4…… yn  superpose at a given point of propagating medium, then the 

displacement of the particle at this point is       y = y1 + y2+ y3 + y4 +…… + yn                 (1) 

Note: The linear superposition principle is valid in the limits of Hook’s law (small displacements)          

-The principle of linear superposition is valid no matter what is the physical nature of parameter 

(mechanical waves propagating  in space, electric fields propagating through the same location, pressure 

waves propagating through a liquid…) that propagates through a medium and no matter what is its 

mathematical form (scalar or vector) of parameter. In the case of "scalar waves" the expression (1) is 

the algebraic sum of scalars; in case of "vector waves" the expression (1) is a vector sum. 

- If two or more scalar waves of same type (ex. pressure oscillations) superpose (see fig. 3) an 

INTERFERENCE phenomena happens. If  the "displacements of superposing waves" add up there 

is a "CONSTRUCTIVE INTERFERENCE" and if they subtract there is a "DESTRUCTIVE 

INTERFERENCE" which may even produce a zero value for the "parameter displacement".        
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-When dealing with superposition of vector waves ( like mechanic or electromagnetic waves ), the 

interference is possible only if the displacement vectors(T1,T2) are aligned along the same direction 

in space or , at least, have components along the each other space direction(in fig.4a, both waves 

propagate along same direction Oz).  If the displacements  of two vector waves are aligned along 

perpendicular directions, even though there is a superposition of waves, no interference is produced 

(fig. 4b). The second wave does not have any effect on the displacement produced by the first wave 

and vice versa. In this case, the particles of propagating medium move on elliptical or on circular 

paths (for equal magnitudes of displacements of superposing waves), around their equilibrium position. 

 

3.4 PULSE WAVE ON A STRING; CALCULATION OF PROPAGATION SPEED. 

- We will refer to the propagation of a small pulse through a string under tension (fig.2) to get            

the expression for the speed of a mechanical wave. Let’s assume that the magnitude of restoring 

force(tension in string) remains the same all time and at any point of string. In the lab frame, the 

pulse wave is travelling to the right at constant speed "V " while any of string particles oscillates        

up and down its equilibrium position(this is a TW wave).                                                                                                                              

                   

- One may simplify calculations by attaching a coordinative frame Oxy to the pulse shape (fig.5). 

In this frame, the pulse shape remains fixed all time while the particles of string move to the left  
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(like water particles inside a curved piece of hose) at 

constant velocity  "-V ". Note that as the problem is 

considered in an inertial frame Oxy (moving at constant 

velocity versus lab frame) one does not have to make any 

correction when applying the second law of Newton.  

- In this frame, as seen from the figure, "the particles    

of string are travelling to the left along a curved path".  

At any point on pulse profile, the particle velocity fits                                                                                                                  

to the  tangent and it´s magnitude "V" is constant.  

Mechanics tells that, in this circumstances, a  string particle(small piece of string at pulse top) moving 

along an arch  (with extension 2θ) undergoes a centripetal acceleration with   magnitude                                              

         
R

V
ac

2

                                  (2)             

where R is the radius of curvature of pulse profile at top. The net force             acting on this 

particle "piece of string" is the vector sum of the two string tensions (restoring forces) applied on both 

sides of this piece of pulse and it is directed along Oy axe (x components cancel each other).One can 

neglect the effect of gravity force on "piece of string" because its magnitude is much smaller than the 

tension in string. From the figure 5, one may find out that                                                                                          

                                        sinrestory FF                           (3) 

Then, the magnitude of        is                                                       sin22 restorynet FFF              (4) 

For small angles       sin                  and one gets                         *2 restornet FF                  (5)  

Next, by applying the second law of Newton                
R

V
mmamaFF crestornet

2

*2            (6) 

From this expression one finds out that                                                        
m

RF
V restor2
          (7) 

If the mass density of string is µ[kg/m], one may express the mass of " this particle - string piece " 

with length  s = R*2θ    as                                                                Rsm 2**                (8) 

and by substituting (8) to expression (7) one gets                


 restoringrestoring F
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             (9) 

                                                                                                                                                                                 

The result at expression (9) is valid for any mechanical wave:    The propagation speed of 

mechanical waves in a medium is proportional to square root of a restoring force (T at a string) and 

inverse proportional to the mass density of the medium (often labeled as inertia parameter of medium). 

Fig.5 Small string piece at top of pulse 
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REFLECTION AND TRANSMISSION OF A PULSE AT BOUNDARIES  

-Now, let’s consider what happens with a pulse wave when it get reflected at the end of the string. 

The end point of string may be "free to move" or fixed and two different situations may be produced: 

a) If the end point of string is fixed, the reflected pulse will be inverted. One may figure out that the 

displacement phasor of the end point gets inverted. So, there is an instantaneously phase change by 

π produced during reflection at a fixed end. One may explain this effect by the third Newton’s law: 

the last particle of string pushes up the particle of wall in contact and this one reacts with same 

magnitude but in opposite direction on the string particle. Then, the reflected pulse travels to the left. 

 

 

b) If the end point of string is free, the reflected pulse is not inverted because the last point of string 

gets to its max shift up before pushing wall particle; so, its motion follows pulse profile and the 

reflected wave is not inverted. So, the phase change (of phasor) during the reflection is zero. 

-In the case of a single string there is only one secondary wave; the reflected wave which is inverted 

or not depending on the type of contact at boundary. If another different (µ2#µ1) string is tied to the 

end point, two secondary waves will appear after the pulse hits on the end of first string. It will be a 

reflected wave which travels back along first string at same speed V1 as primary wave and a 

transmitted wave that will propagate along the second string at speed V2. If the linear density μ2 >  μ1  

then the reflected wave is inverted (Δφ = π )  and if   μ2  <  μ1  it  is not inverted  (Δφ = 0 ). 

In all cases, the transmitted wave propagates through the second string without a phase change at 

boundary. When two strings are connected to each other the same tension applies at any point of 

each of them. Based on this fact and taking into account that the linear densities are different, 

 one may find out the ratio of wave speeds through them as:                  
  

  
  

  

  
                           (10) 

 

Fig.6     Phase of reflected wave 

Fig.7  Pulse reflection /  transmission  through the boundary of two strings with different mass densities 


