
 

4.1 TRAVELLING WAVES 

 

- We saw the graphic presentation of a pulse propagation as a TW wave along a string. 

Now, we will find the mathematical description of this phenomenon. Let's start by drawing  

Ox axe parallel to the string, assign x = 0 at its free end and take t = 0 at the moment when 

the end point of pulse shape (i.e. the end point of disturbance) is located at origin (see fig.1).  

At t = 0 the pulse shape can be presented by a function y = f(x) which mathematical form 

depends on the shape of the pulse. This function defines the pulse wave in "space domain". 

To find the function that includes information  about the pulse wave in time domain one: 

 considers a pulse with known shape function, i.e. known function f = f(x)
1
 . 

 notes that a " feature f1 " on its shape is defined  by a given value of phase "x1".  

 considers that the pulse propagates without deformation, i.e. each pulse feature 

  (and its corresponding phase) propagates at the same speed  "V" along the string. 

   expresses mathematically that the f- feature of pulse at "x" and time " t " i.e. f(x, t)  

    is the same as f1-feature of pulse at time t = 0 which is located at  x1 = x  – V*t  . 

Next, knowing the shape of pulse wave at t = 0, i.e. its " space domain " function f(x),  

one can get the  f - value at  position " x " at time " t " i.e.   f(x,t)  from the relation  

                                                                        f(x, t) =  f(x1) = f( x - V*t )                 (1) 

 

        if the pulse is travelling in positive sense of x-axis. If the pulse is travelling in negative 

        sense of x-axis (see fig.2), one get the expression  

                                                                                  f(x, t) = f(x1) =  f( x + V*t )      (2) 
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Figure 1 Wave travelling along +Ox sense                      Figure 2 Wave travelling in negative sense of Ox                                                
       
- A given feature " f1 " of pulse at t = 0 corresponds to a given phase ( via x1 - value ) at the 

space function f(x). Meanwhile, the travelling wave function f(x,t)  has the same feature 

(i.e. " f  ≡  f1") at all the points (x) and the times (t) that fulfil the condition  

                  (  x - V*t ) = x1 (constant)   (3)       or         (x + V*t ) = x1 (constant)         (4) 

 

The factor in brackets i.e. ( x +/- V*t )  presents the phase of traveling wave  function . 

 

The derivative of expressions (3, 4) gives  

                                                                                             dx/dt = +/-  V                 (5) 

V- is called "wave speed" and noted as "Vw", but strictly speaking, it is the phase speed.  

                                                 
1
 Actually  f(x)=f(x,0)  and the pulse may have any kind of shape. From now on, when referring to a travelling wave phenomena 

we will call phase the quantity inside the brackets of the function that describes the wave. 

 



 

- From the practical point of view, one may get the function of a travelling wave simply by 

adding the factor " ±V*t " after  x-argument inside the space domain (i.e.shape) function f(x). 

Example: If the space function is  f(x) = sin (2x
2
)  one  gets f+(x,t) = sin [2(x-Vt)

2
]  for the 

function of a pulse wave travelling versus the positive direction and  f-(x,t) = sin [2(x+Vt)
2
] 

for the function of a pulse wave travelling the versus negative direction of Ox axis. 

To check if a given function may represent a travelling wave, one should transform it so 

that time and position appear as  only one type of  factors   ( x - V*t)    or   ( x + V*t). 

 

 

4.2 TRAVELLING HARMONIC WAVES 

 

- Consider a string under tension and assume that a device moves up and down one of its 

ends in a harmonic way (i.e. SHM motion). The external device at "source" of this TW that 

travels along the string can change the period of oscillations of the "source".  Let " T " be 

the period of oscillations of the source ( remember that its natural frequency is f = 1 / T ).  

 

-At the moment t = T (one period) the end point of string (i.e. the source of wave) has completed 

one oscillation and is ready to start the second oscillation. Meanwhile, the disturbance of 

this wave is propagated through the string till a point at distance λ  where  

 

                                                                                             λ = Vw*T                        (6) 

 

"Vw" stands for the speed of wave travelling through string. 

 

Later on, the string particle at this point oscillates, all time, in the same way as the point of 

string where the wave is born i.e. "at source" (fig.3). The length λ is called " wavelength " 

and it is in the role of  "the period " for this harmonic function  f(x) of space coordinate x. 

Note that any two point of string at distance λ between them oscillate with phase difference 

2π (see fig.4). One says that two points of propagating medium oscillate "in phase" if the 

phase shift between their phasors is all time constant and a multiple of 2π (i.e. 2π, 4π, 6π,..). 
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- While the end point of string oscillates as a SHM due to the source motion, this oscillation 

travels along the string. By taking a string snapshot at a moment t >>T one may see that the 

string has a sinusoidal shape(fig.4). Next, one can consider this moment as t = 0 and 

remember that such shapes are described by an harmonic function of form     

                                                                   

                                                  y(x) = Asin(kx+φo)                                                  (7)   
 

the phase " (x) = kx+ φo " of this function depends on location  "x".     

 

Ignoring the source location
2
, one can fix the origin of Ox axis at a point with zero 

"displacement " such that  y(0) = Asin(0 ) = 0, 0 = 0  and get   y(x) = Asin(kx). 

The constant k has the role of the constant b = 2π / P  in the section about the graphs.                   

As   P = λ,  one gets  k = 2π / λ  and this brings to phase expression (x) = (2π/λ)*x   

So, the wave shape or the space function that describes the snapshot in figure 4  is  

 

                            y(x,0) =  y(x)  =  Asin(kx) = Asin(2π/λ*x)                                   (8)  

where  k = 2π/λ is known as the wave number (or magnitude of wave vector)        

 

 

-The three physical quantities k, ω, Vw  are related by the following expressions 

 

                  k = 2π/λ = 2π/(Vw*T) = ω /Vw          (9)         and           ω = k *Vw         (10)   

 

- Finally, one uses the phase shift rule to get the function of travelling waves.  

So, for the propagation of an harmonic wave along the positive sense of axis, one gets 

 

                              y+(x, t) =Asin[k*(x-Vwt)] = Asin(kx - ωt)                                   (11) 

 

and  for propagation of harmonic wave along the negative sense of axis one gets  

 

                              y-(x, t) = Asin[k*(x + Vwt)] = Asin(kx + ωt)                               (12) 

 

When considering the presence of an initial phase constant φ0, these functions become 

 

 x-positive propagation                          y+(x, t) =  Asin(kx – ωt + φ0)                      (13) 

 

 x- negative propagation                        y-(x, t) =  Asin(kx + ωt + φ0)                       (14) 

 

 

-The characteristics of SHM motion (i.e. υ(x) = y’ and a(x) = y”) for a the particle of string 

located at  position ' x ' are found from the derivatives of wave function y(x,t ) at that point. 

                                                 
2
 We have only a snapshot and we do not know where the source is and what direction the wave propagates. 



 

 4.3 STANDING WAVES 

 

-  Let's consider two harmonic TW waves propagating along opposite senses on the same 

string. Assume that they have equal amplitudes, same frequency and φ0 = 0. Then, the  

function of the wave travelling on negative direction is : )sin( tkxAy 
     (15) 

function of the wave travelling on positive direction is  :  )sin( tkxAy 
     (16) 

 

-  Superposition principle: the disturbance (displacement in space) at any string particle is 

                                                                   
 yyy                                                (17) 

                                                               (18) 

 

Important:  In this wave function, the " space " part of phase and the " time " part of  

                    phase are separated. This type of function describes a  standing wave . 

 

-The " space " function sin(k*x) defines the positions of   "nodes" ( y(x) = 0  all time ) 

  at the locations where         φ(x) = k*x = (+/-) n*π.   n=0,1,2,3,…           

 As the phase shift between two consecutive nodes is π, their distance Δx on string is 

                                           
2

2 





  xxxk  

Also, the function sin(kx) defines the locations of "antinodes" (oscillations at maximum 

amplitude 2A). At an anti-node, sin(k*x) = +/-1  and  its location is found by the condition                                                

    φ(x) = k*x = +/- (2n+1)*π/2.  n=0,1,2,3,…           

The distance between two consecutive antinodes is           
2

2 





 xx   

One may figure out (fig. 5,6) that there is an anti-node between two nodes and vice-versa. 

 

-The quantity )sin(2)( kxAxA   in (18) is the amplitude of oscillations at location "x". 

In a standing wave each point "x" of medium oscillates at "its own amplitude A(x)" while 

in   a traveling wave, all points of medium oscillate at same amplitude A. In both cases, 

the string particles oscillate around equilibrium position at same frequency " f = ω /2π "        

(as built by the source). Note: Standing waves do not travel. Travelling waves do travel. 

 
Fig 5                                                                                   Fig 6 

Antinode 

Node 
Standing Wave 



 

4.4  RESONANCE  

 

- The function )cos()sin(2 tkxAy   does not have any restriction for the frequency 

or wavelength of a standing wave if there is not any boundary restriction. But, in case 

of standing waves on a string of finite length L with a fixed end point, this point must 

be all time a node and the space part of wave function must fulfill the condition  

                  n

L
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                                  (19) 

A string with finite length L and a fixed end cannot "host" standing waves for any  

value of  λ. It "allows" only those that fulfill the condition        
n

L
n

2
      n=1,2,3,…  

 

-The corresponding frequencies are known as "resonance frequencies" of string. 
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The source of waves can oscillate at different frequencies and waves will propagate     

on string. But, only if the source frequency equals one of values defined by condition 

(20) a standing wave appears on the string. One says that the system source-string is 

vibrating "in resonance " or a resonance is produced in the string (propagating medium).   

 

- Note that the resonance frequencies are " string characteristics ". 

The first one, i.e.            is known as fundamental or first harmonic frequency. 

The second one,              is labelled as second harmonic frequency and so on.  

The boundary condition (node at location equal to the length of string L ) defines the 

frequencies of resonant modes or normal modes of the string.  Note that this remains 

true for any oscillating system;  the frequencies and wavelengths of resonant modes of 

any oscillating system are defined by its boundary conditions.  

 

 

Note: 

These kinds of string vibration are 

called “normal modes of the string”. 

    
  

  
            

,..2,1_;
2

 n
n

L
n  
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