Remember:

-When a wave front falls over an aperture, there is always a "cut " of the wave front and this produces
light diffraction at the output of aperture. Huygens principle explains the diffraction by introducing the
set of secondary sources that emit light wavelets.

- When calculating the effects of slit diffraction on a screen beyond the slit, one refers to the principles
of interference. This sentence shows that diffraction and interference are closely related.

In general, one prefers to label as diffraction pattern the pattern that correspond to a single aperture on
a screen and interference pattern the pattern that correspond to a set of apertures on a screen.

OPTICAL SPECTROSCOPY

-The dispersion of sunlight into a spectrum of different colors by using a glass prism (fig.1) brought to
the idea that one may gather information about the source of light by analyzing the light that it emits.
This observation was the first step versus the development of optical spectroscopy.

-In the following chapters, we will see that, when a source of
light contains only one type of atoms (or molecules), it emits a
light which contains a specific finite set of wavelengths (A1, A2,
- ..M and this set is a kind of "signature for this type of atom or
__ molecule”. So, one may identify the elements inside the source
L of light (i.e. get the constituency of a sample) by analyzing the set
of wavelengths in spectra recorded by a light spectrometer.
Fig.1 White light dispersion by a prism

-For a long time, all optical spectroscopes were based on dispersion features of prisms. These devices
have moderate spectral resolution (1-2nm in visible spectrum, i.e. do not allow to distinguish
wavelengths "closer than™ 1nm). When studying the interference from a system of multiple slits (i.e.
optical grating), one figured out that this system could help to improve the spectral resolution.
Nowadays, the optical grating is the dispersion tool for the majority of light spectrometers.

- The capacity to distinguish two close wavelengths A1, A, iS @ main characteristic for a spectrometer.
The spectral resolution is Almin= A2 - A1 between two wavelengths that can be distinguished by a
spectrometer; the spectral resolving power is inverse proportional to spectral resolution R ~ 1/Aknin.
One has defined for the spectral resolving power of a spectrometer as

R =2_av/Ad,i, 1)
where A)\,min = ),2 - /11 and )ua\,: (12 + ),1)/2

One may get an idea about the advantage of gratings in optical spectroscopy, by referring to a
comparison in the middle range of visible spectrum where the resolving power of a common prism
spectrometer is R= 550nm/2nm=275. At the same region, the spectral resolving power of a grating
spectrometer (as we will see in next section) is easily larger than 1000. This means that for R=1000, the
grating offers a spectral resolution Akmin = 550/1000 = 0.55nm or ~4 times smaller than with a prism.



GRATINGS

-A conventional optical grating contains parallel lines grooved onto a reflecting or transparent surface.
The gap between scratched grooves (known as rulings or lines) acts as a single diffracting slit. In case
of a transparent grating (fig.2a), the output waves travel on the other side of grating. In the case of a
reflection grating (fig.2b), the incident and output waves propagate on the same side of grating. The
distance between the centers of two adjacent slits ("d " parameter) is labeled as grating spacing.

Fig. 2

-An optical grating operates as a dense set of multiple parallel slits at distance "d " from each other.
The slits width a < d and the corresponding central maximum of diffraction is very large. Also, one
places the screen " far enough " from grating so that one can use the model of "plane wave fronts ".

Example. One grating has 500 rulings/mm. Find the maximum distance "D" where should be placed a screen
with width 30cm (2rR=30cm in figure 3) so that it can be entirely illuminated by the central diffraction maximum of
a single slit pattern. Consider a light wave around the middle of visible spectrum (ex. take 1 = 500nm).

Each slit produces a diffraction pattern on the screen with light concentrated
/ R inside the central maximum. We want the extension of this maximum to cover the

screen width. The distance " D " is such that the first order minimum of single
6 slit diffraction falls on screen border. The first minimum direction is defined

8 D

R by relation asinfs_; = A — sinbg_q = A/a ™
where "a" is the “s/it width”.

_ From our data, d =1mm/500 = 2*10°° mm= 2*10° m = 2*10° nm.
Figure 3 With a reasonable conservative assumption, let's assume a = d/2 =1000nm.
From the figure 3, one may see that R=30/2=15cm and it comes out that
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and (1 —0.25)R% = 0.25D2 - 0.75 x R2 = 0.25D2 — D = /E_Zi* R =0.1732 % 15 = 26cm

= 0.52 = 0.25 - R? = 0.25(R? + D?)

- Assume that a grating (i.e. many slits per mm) is placed parallel to a screen at a distance where the
central maximum of diffraction of "all single slits" covers the screen width. (Note that, due to the shift of
centers of different slits, the width of common central maximum of diffraction, is a bit larger than that due to
one single slit). Now, consider that a monochromatic plane wave falls perpendicularly on the grating
plane. Each single slit produces a wave that would illuminate "almost uniformly” the area of screen. Also,
the waves from different slits superpose on the screen. They are all coherent waves with same
wavelength. In these circumstances, an interference pattern will be produced on the screen. One may
find out the position of interference fringes on the screen by calculating the path length difference and
the corresponding phase shift between waves emitted from different slits that superpose along the
same direction and consequently fall on the same location on the screen.



Incident light
wave, front

- Let’s consider at first a system of four slits equally spaced (distance "d") and a
monochromatic (one 1) plane wave falling on it. Assume that if angle shown in

fig. 4 has a value 0= 6, there is a path length difference d,., =4 between the

wavelets "1-2". This means that for 6=0, 61—, =dsinf, = A 1)
: ) ) 2
As the corresponding phase difference is Ag , = 7”*/1 =2 2

it comes out that the waves from consecutive slits 1, 2 produce a maximum of
interference of order M = 1 along this direction. Along this same direction 61,
any two consecutive waves (1-2, 2-3, 3-4) produce the phase difference 2x. So, the
set of four slits will place a maximum of interference of order M=1 along the
direction 01. If along direction =6, would correspond a path length difference

81,= 24, then dsin @, =24 and along this direction A¢, , = 27”*2/1 =2*2r

Figure 4

which means that a maximum of order M = 2 would be placed along direction "6,". One may figure out
that the same phase difference (2*2m) is produced by any two consecutive waves (1-2, 2-3, 3-4) along
this direction "6,". So, it comes out that the set of four slits would produce a maximum of interference
of order M = 2 along the direction #,. This logic shows that the system of four slits produces maxima
of interference along the same directions that correspond to the interference maxima for a two slit , i.e.

dsing, =MA wm=o,+1, . (3)
and one calls them PRINCIPAL MAXIMA.

-What happens along the directions between any two consecutive principal maxima? For simplicity,
let’s consider maxima of order M = 0 and M = 1. Here we have to note that, for M = 1, the expression

(3) gives a path length difference 8= dsiné, = between any two consecutive waves (say 1-2). In the

meantime, along the same direction 6y, there is a path length difference 36 = 34 between waves 1- 4.
This gives a corresponding phase shift Ap:. , =(2n/2)* 3/=3*2x. So, the superposition of waves 1- 4
does produce a maximum along direction 6;, but this maximum is of order m’=3. This means that, due
to interference between waves 1- 4, in the region between the central maximum (direction 6,=0°)
and the principal maximum of first order (direction 6;) should be placed two additional maxima
(of orders M ’=1,2) and consequently three related minima . This means that the set of 4 slits produces
4 -1 =3 minima between any two principal maxima of interference.

For a set of eight slits, between the central maximum and the principal maximum of order M =1,
due to interference between waves 1- 8, would appear seven minima ( 8-1 = 7). By extending the same
logic on any two consecutive principal maxima of interference, it comes out that, for a set of eight slits,
there are seven minima between any two principal maxima of interference.

As shown in figure 5, the presence of seven secondary
minima, changes the distribution of light between any two
principal maxima. It gives rise to narrower and more intense
principal maxima and leaves just a bit of light between them.

-A grating contains thousands of slits. This means thousands
of secondary minima between any two principal maxima.
Consequently, a grating produces extremely narrow principal
maxima and no light between them.

) ] The narrow principal maxima are the key feature at the origin
Figure 5 Interference pattern for 8 slits of high values of spectral resolving power (R) for gratings.




SOME BASIC RESTRICTIONS FOR USE OF GRATING IN SPECTROSCOPY

-A detailed calculation (see Halliday&Riesnick 9" edition p.1009) shows that the spectral resolving power
of a grating can be expressed as
R=A, /AL, =N, *M (4)

Aav IS the average wavelength of two spectral lines that can be barely resolved;

Almin is the spectral resolution (minimum wavelength difference between two lines that can be barely resolved);

Ny is the total number of grating rulings illuminated by the incident beam(i.e. operating slits);
Ny =N *w if N (ruling/mm) and the incident beam covers a grooved area with width w (mm)

M is the order of interference of the maximum used to observe the spectral lines.

Based on this expression, one would attempt to increase the spectral resolving power by working with
high orders of interference "M". But, there are several restrictions:

a) The angle of diffraction "0y" increases with order "M" of interference but, it cannot go over 90°.
From expression of principal maxima one can get dsinfy = MA— M = %sin@M 5)
As sin90° =1, the theoretical maximum possible value for M is Mpax=d/ 4 (6)

b) The limited coherence length Lc of wave trains restricts their superposition for big angles.

c) Like in the case of two slit’s pattern, the envelope of central maximum of diffraction (the result of
all single slit central maxima of diffractions) diminish the intensity of higher orders of principal maxima
of interference that fall close to limiting directions of first order minimum of single slit diffraction.

d) When recording a broad range of wavelengths, often happens an overlap of different order spectra
and the experience shows that this problem is common for interference orders of M =3, 4,...
If there is an overlap of different orders for different A values at the same position on the screen,
one cannot get out any information. For this reason, in general, one works with orders M =1, 2.

In a general purpose use of a grating, N ~500grooves/mm and
the diameter of light beam is larger than 2mm. So, the number
of working slits is easily N,, > 1000. This means that one can
get easily a resolving power R = 2000 by using the spectra at
the second order (M=2) of interference. The high " R-values "

I 5l R | .., arethe main advantage of a grating spectrometer versus the
5 prism spectrometers. However, the gratings produce several
}\ = — w.. principal maxima (M = 0,£1,+2,+3..) and distribute the energy
- L of the incoming light with the same A - value through all the
} o — w2 principal maxima. Therefore, when analyzing the maxima of
5 0 o different wavelengths in a light beam at a certain order, one

has to work with just a portion (~ 1/5 if Mx=2) of the
available intensity at incident light.

Figure 6 Resolution of two wavelengths in .. . -
This is a weak point for the grating spectrometers.

incident beam through different orders of grating.

As an alternative, a spectrograph with prism places all the energy of incident beam of light with same
A value along one direction defined for that wavelength by the prism dispersion. So, if the intensity of
light at the input is low and, for the purpose of the study, a spectral solution of order several hundred is
good enough, one might prefer to use a prism spectrograph instead of a grating spectrograph.



THIS ADDITIONNAL MATERIAL ON PHASOR MODELLING
IS VERY USEFUL FOR THE STUDENTS THAT PLAN TO
FOLLOW THEIR EDUCATION IN PHYSICS OR ENGINEERING
BUT IT IS NOT A PART OF THE COLLEGE COURSE

THE PHASOR
-We have introduced the trigonometric model for SHO study and we have used it:

a) for the derivation of wave function in SHO;
b) to find the relationship between the phase shift and path difference g = 27’:5 :

We have used this model to find the interference rules for iwo coherent waves. Also,
we used trigonometric calculations for fringes’ intensity in Young’s experiment and
in these calculations we dealt also we two waves. One may think to use the same
method (trigonometric calculations) in case of multiple waves but this is not practical.
The calculations become cumbersome even for three-wave interference. It is clear that
one has to use another method to calculate the patterns’ infensity in case of grating
where a big numbers of waves interfere.

-The concept of PHASOR is an extension of our initial trigonometric model and offers
full flexibility in the studies of interference from multiple waves.

a) Itis avector. As a consequence all vector operations are valid for phasors. It
represents a physical quantity that oscillates sinusoidal in time. In case of light,
the physical quantity is the electric field of light wave; E = E, sin{a¢)

b) Its magunitude is equal to wave amplitude (Eo for light waves).

c) Ata given moment ‘t’ it forms the angle @(t) — “phase™ with a reference axis “Ox
axis” and rotates with constant circular frequency o.

d) The projection of phasor on to “the vertical axis Oy” represents the variation of
physical quantity in time.

¢) If several oscillations of the same nature superpose, one may study the result
behaviour by use of the sum of respective phasors.

PHASORS IN MULTIPLE SLITS INTERFERENCE
-In the following we perform calculations for a given X and assume:
a) Actual field vectors lic along the same direction in space.
b) Very narrow slits which, when alene, produce uniform illumination on the

screen.
¢) Equal separation ‘d’ between each two adjacent slits.




d) The screen is located in the far-field region. This means that outgoing rays are
almost parallel and there is a constant path difference between adjacent
slitsd =dsin8. '

-

TWO SLITS SYSTEM
Two phasors with equal magnitude (Eo) rotate all time in phase (same w).

a) For phase shift 9 = 0, 2=x,..

The sum phasor has the magnitude 2E,. The correspondmg intensity is 4E% =41, .

b) For phase shift o ==, 37,5 n..

The sum phasor has the magnitude 0. The con‘espondmg intensity is 0.
So, the intensity values vary between the maximum value 41, and the minimum value 0.
¢) For other values of phase difference (see fig.6)

From the theorem of cosines one finds out that

E'r E’% = E: +E°2 —2EE, cos(x - §) =
| @0—' —_ =2E} +2E} cosg =2E; (l+cosg)=  (12)
o - =4E; cos™(¢/2)

Fig.6

THREE SLITS SYSTEM
Three phasors with equal magnitude and same phase difference ¢. The figure 7 presents

the resultant phasor magnitude for different @~ values between [0,2x]. That is between the
central and first principle maxima.
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Figure 7

One may get informed about the resultant intensity for different values of phase ¢ by
following the evolution of resultants phasor in figure 7. It is easily seen that it :

a) 1s maximum 1, = 9, for ¢ = 0 which corresponds to central maxima.

b) Decreases while @ increases to 45"(1:,:4) and 90° (w2).

¢) Become 0 for ¢=120°(2n/3)......... [3*@ =1%2x].

d) Increases for o = 135" (3n/4).

¢) Get alocal (secondary) miaxiiiim for ¢ = 180° (n).



f) Decreases for ¢ = 225° (51/4).
g) Become 0 for o =240°(2*2n/3)......... [3*¢=2*%2x].
h) Increases to Inx = 91 for @ = 2 which correspond to first principal maxima.

From this scheme we can get the following basic features of three slits interference:
Principal maxima for ¢=m*2=x; m=041,+2, .
Minima o=p*2n/3,; p==1, 415 . .
p#0,43, 16 ...
Secondary maxima for ¢=Qk+Dmn: k=0z%1,42,. .
; These features appear in the calculated profiles
I that are drawn in figure 8. One may calculate these
16 spectra by using N =2, 3,4 in the general formulae
“ N=4 we will get at the next section.
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Fig. 8

THE CALCULATION OF PATTERN INTENSITY FOR A SYSTEM OF N SLITS
-The phase shift between two adjacent slits in a system of N equally spaced narow slits
with separation ‘d’ is .
5=dsin 9 (13)
Figure 9 presents a phasor diagram for an N slits system. Note that one can get quickly
the information about the basic features of spectrum.
a) There is a principal maximum for each angle
p=m*2r,_m=01132, . (14)
b) There is a minimum for such angles that
Ng=p*2z,_p=011£2,. o
2z
—_ * - —_
¢=p N =P 0142, as)
p#N2NJ3N..
¢) The first minimum besides the central maximum
(important for resolution issues) ocenrs for
6= g = 2% ysng < 2%
| Neg=2m,—> ¢ N_cmd_ y) dsmné@ N
Fig. 9 which defines the angle as sin g\, = Nf 7

(16)



-From expression (14) we see that principal maxima positions do not depend on the
number of slits. Their location is the same as that of a two shits system. Meanwhile, the
expression (16) shows that they are much narrower in the case of big number of slits.

- Based on the fig. 9 we can find easily the expression for intensity as function of
phase difference ¢. From this drowing one may see that:

sin¢/2=2g—;—>E°=2Rsinﬂ2 (17)
sinNg/2= % = E,; = 2RsinN¢/2 (18)
. 2 . )
Then Lor _Sn(N¢/2) I _ Eq | _sin’(N¢/2) (19)
E, sin{¢/2) 1, E, sin’(g/2) -

The expression (19) is very general. It gives the intensity value for each angle and for
each number of slits. For example, for two slits we have

sin®(2*¢/2) , sin’(4) _, [2sin(g/2)cos(¢/ 2" _ ,, cos?($/2)
® sin*(g/2) sin’(g/2) ° sin(¢/2) o

So, we find the known results for pattern intensity in two shis interference
I =4I, cos’($/2) Q0

N-SOURCES INTERFERENCE IN OTHER REGIONS OF E.M. SPECTRUM

- Note that light waves are electromagnetic waves and we did not do any special
restriction on the wavelength of interfering waves. So, the principles we used and the
derived conclusions might apply in other regions of E.M. spectram, too.

- The model of N equally distant source played a decisive role in the discovery of
physical nature of x-rays. At the begiuning of the last century, the scientists knew that
a space dimension ~ 0.1nm was characteristic for these rays but didn’t know if they
were dealing with a particle or a wave. It was the diffraction of x-rays from the atom
arrays in a crystal that proved their wave nature at 1922. As the distance between the
atoms is of the same order as x-rays, a system of identical equidistant atoms acis as a
system of identical equidistant shits. Nowadays, the x-ray diffraction is the mam
technique that infers information about the arrangement of atoms m crystal structures.

- The principles of interference from equally distant identical sources are applied to
- amplify the low intensity signals. This is the case of a system of similar telescopes
that receive small signal from one direction in space. All signal are superposed at a
center. A special electronic treatment builds the precise phase shift that would
correspond to a principal maximum of interference for the & used by the telescopes.



