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REMEMBER 

 

-The colour of thermal radiation (or blackbody radiation) depends only on the temperature of its "source".  

 

-  The black body is an object that absorbs & emits all radiations. One refers to this model for the study of 

thermal radiation in equilibrium at a controlled temperature. The energy density u(T)[J/m
3
] of a radiation 

is the amount of radiation energy contained into 1m
3
 . The spectral energy density u(T)λ  [J/m

4
] gives the 

distribution of u(T) through  different wavelengths. One can get  u(T)λ  by the thermal radiation spectrum.     

 

-The Wien’s first law gives the relation between the wavelength at maximum intensity  and the 

temperature of thermal radiation spectrum as 
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- Planck hypothesis about  minimum amount of transferred  energy      /__;* cfwherefh    with 

sJh *10*626.6 34    produced  the expression   
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   which fits to experimental records. 

                                                                                                   

-The photoelectric effect is the emission of electrons by a metal when a beam of light falls on it. 

 One can find the maximum speed of ejected electrons by using the stopping potential "V0" and expression 
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-A. Einstein explained the basics of photoelectric effect by introducing the quantum model of light:  

  

Radiation can be modelled as a collection of photons, each containing the amount of energy ε = h*f .  

During a collision photon- free e-, the photon is absorbed and there is an instantaneous transfer of energy 

"ε" to the electron. One part of "ε" goes for  the work function, one part for possible interactions inside 

metal; the rest goes for kinetic energy of photoelectron. If there is no internal interactions, K = Kmax  and    

                                                  

                                                                   
                                                              

 

- Compton effect is the scattering of X-ray photons by free electrons(or loosely bound). The scattered  

radiation contains photons at a wavelength  ’ ≠incident; ’ value depends only on  the scattering angle.    

 

    This effect is experimental proof  that x-rays behave as photons and they have a linear momentum. 
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     (h/m0*c) = 0.00243 nm (Compton wavelength.) 

 

- The light is emitted during the transition of a quantum system(atom, molecule..)  from one level of higher 

energy to a level of lower energy. The light can be absorbed by an inverse transition. The frequency and 

wavelength of emitted (or absorbed) light related to a transition 21  can be calculated by the relations 
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THE DUALITY WAVE-PARTICLE OF LIGHT 

 

- A brief summary of historical records about the physical models used for the light shows that: 

a) From the antiquity till 19
th

 century one considered that light is a stream of tiny particles.  

b) During the 19
th

 century till the beginning of 20
th

 century, the physicists used extensively the wave 

model for light. The experiments (Young , Fresnel…) and the theory (Maxwell, Huygens..) provided 

a full set of proofs for the wave model of light. 

c) By the end of 19
th

 century and during the first 30 years of 20
th

 century, appeared a number of 

experiments (thermal radiation, photoelectric effect, Compton effect, line spectra from atoms, etc), 

that have explanation only in the frame of a quantum model for which the "light is constituted by 

photons i.e. "bubbles of light energy" that behave as " particles ".      

   So, it was normal to ask: "What is the true nature of light; wave or particle?" 

 

- Note that it was not easy to get an answer for this question because physics is an experimental science 

 and there was experimental evidence for the two models of light. 

  

  Initially, the physicists tried to solve this puzzle based on the following arguments: 

a) At low frequency range of electromagnetic radiations, a single photon contains extremely small    

amount of energy (εph = h*f). In this range (radio & TV waves) the measurements deal with a very 

large number (billions) of photons; one cannot isolate and observe the behaviour of a single photon.  

     So, the observed wave behaviour concerns the collective behaviour of a big number of photons.     

b) At high frequency range of electromagnetic radiations, a single photon has high energy ( εph = h*f ).  

    When performing measurements in this range (X or γ-rays), one "deals with single events" and one is  

      more realistic  when judging about the true nature of electromagnetic radiation.  Experiments in this 

      range of frequencies confirm the particle (photon) behaviour of radiation. So, this should be the true 

      nature of all E&M  radiation and, as a part of it, the true nature of visible light, too. 

   

- Hence, physicists thought to look for the ultimate proof of particle model of E&M radiation in the region 

  of visible light where both light models ( particle  and wave ) apply successfully (as there is experimental 

  proof for both of them). The essential point of view for all these experiments was the following: 

  Assuming that the wave behaviour concerns only a large number of  photons, the interference and 

  diffraction patterns should disappear  if one sends "each photon  separately " at the input of slits.  

 

So, one checked this hypothesis by sending visible light photons "one by one" (by using extremely low 

intensity beams) towards slits in diffraction experiments(with single slit or two slits). But, when observing  

the screen after a long time they found always the same diffraction-interference pattern as if many photons  

were sent simultaneously. These experiments brought to the conclusion that wave behaviour of light is not  

a feature that concerns only a big number of photons.  Even a single photon has wave characteristics. 

Consequently, the duality particle – wave comes out as an intrinsic feature of light.  

 

- This type (dual) of behaviour appears clearly when one considers the photon in the frame of special  

theory of  relativity.  When applying the expression for total energy of a relativistic particle  
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This relation associates (or attaches) to a wave with wavelength "λ" a particle with linear momentum "pph".  

Note that both characteristics (λ of a wave and pph of a particle) belong to the same physical object (light). 

 

- It’s true that some natural phenomena are explained in full inside particle model and some others are  

explained in full inside the wave model  but the light behaviour cannot be explained in full inside only 

 one of those models. In some experiments its behaviour is explained by the wave model and in some 

others by the particle model. Besides, some of light characteristics cannot be supported by any of  these 

two models: 

    - Light behaves as a wave "with no need for a specific propagating medium"!!  

   - Light behaves as a particle which "speed does not depend on the frame where one measures it"!! 

 

Conclusion; "There is no sense to talk about the true nature of light". For this reason physics simply uses:  

                 a)  the wave model to explain  diffraction and interference phenomena                          and 

                 b)  the particle model  to explain the absorption, emission and scattering of light.   

 

 

THE MATTER WAVES 

 

-Bohr’s model introduced the "allowed circular orbits" (fig 1) to explain the origin of line spectra of 

hydrogen and other one-electron ions. But, this model has three weak points: 

 

a) It does not give any justification about the reason why only those orbits are allowed. 

b) It does not work for atoms with more than one electron. 

c) It is not able to offer any way for calculating the intensities of spectral lines. 

 

Actually, the major contribution of this model is the introduction of quantification into different 

parameters of atomic models, even though in an unjustified way. 

  

 
           Fig 1                                                                                      Fig (2) 

 

- The next important development in quantum theory was the introduction of the duality behaviour  

  into matter models.    In 1924, Louis de Broglie introduced the postulate: 

                   " The dual behaviour " wave-particle "  is valid for objects with mass, too. 

De Broglie principle states that:  

To any particle with linear momentum p = mυ is associated a wave with wavelength                                 

given by relation                                                    ph /                                                                 (3) 

Note that relation (3) is the same as relation (2) but it is written and read in a reverse order. 
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- The first proof of validity for this principle was the justification of  "allowed orbits" in  Bohr’s  model.  

To get the expression for energy levels,  Bohr assumed  that the magnitude of angular momentum " l "   

(    =       ) of electron in an allowed orbit with principal quantum number " n " must fulfill the condition 
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Bohr used this condition simply as a mathematical request to get an expression that fits to the recorded  

line spectra of hydrogen but he did not justify his assumption from physic´s point of view. If one applies 

de Broglie relation (3) for the linear momentum of an electron at (4) one get the expression (5) 
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The expression (5) is similar to a requirement for wave resonance in a string or in a pipe length. So, the 

de Broglie postulate provides an justification based on physic's models for the arbitrary allowed orbits: 

" Only orbits that  fit an integer number of e
-
 wavelength on their circumference are allowed (see fig.2)".   

This explanation of Bohr’s orbits is based on the idea that there is a wave associated to the electron. 

 Note that the model of discrete orbits allows to calculate the wavelengths of atomic line spectra which are 

 observed experimentally. This way the line spectra are an indirect proof of wave behaviour of electron i.e.  

the existence of  " e- " related waves.   

 

 

ELECTRON DIFFRACTION 

 

- The explanation of "allowed orbits" in Bohr’s model was an indirect proof for existence of matter waves.  

The direct proof needed a diffraction or interference pattern produced by those waves. In 1926, Davisson  

and Germer recorded the diffraction pattern of "e-" waves. In this experiment, a heated filament produced 

electrons which were provided a linear momentum by an electric potential difference V (fig 3). The beam  

was directed on a Ni target and one measured the number of " scattered electrons " along different angles.   

 

- Depending on the behaviour of electrons, two different results might appear: 

a) If electrons are only particles, after collision with regularly arranged atoms in the crystalline array of 

Ni, they should be scattered uniformly in space. 

 

b) If the electrons behave as waves, after collision with regularly arranged atoms in the crystalline array of 

Ni, they should be scattered "as diffracted " by obeying to the diffraction-interference  rules for waves.  

In this case one must record a greater number of e- scattered along some specific space directions.  

 

One might remember that the diffraction-interference pattern of a wave is produced only if its wavelength 

 λ is comparable to dimensions of diffracting structure, in this case to "distance D between Ni atoms ".   

Davisson and Germer used  the electric voltage of an electron gun (see fig.3) to tune the " wavelength    

of electrons". By use of an electric potential V,  they provided to electrons the kinetic energy 

  

      
   

 
 

    

  
 

  

  
            and         the linear momentum                              (6) 

 

Then, based on the expression (3), the corresponding wavelength of  e- wave  would be 

e- 
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            Fig 3                                                                          Fig 4 

 

So, they could tune λ values of  e- wave  by changing the voltage value "V ". Taking into account that  

for Ni crystal the " inter-slit distance  D " is D = 0.215nm, they had to apply an voltage V that gives 

- values of the same order. With this requirement fulfilled, Davison and Germer observed that the  

number of scattered electrons was much bigger along several particular directions of space (fig.3,4).   

This was the direct experimental proof for the wave behaviour of electrons.  Later on, one could prove 

 the dual nature (particle-wave) for  neutrons and protons by experiments, too.  

 

 

SHREDINGER’S WAVE EQUATION 

 

- By the end of second decade of 20
th

 century, there was experimental proof  for the dual nature of light  

and subatomic particles. Also, there were theoretical models for the two facets of light  and for particle  

behaviour of matter but here was no theoretical model for the wave behaviour of particles with mass.  

 

- Erwin Schrödinger filled this gap. One might remember that, despite the different physical meaning of 

their "displacement", the mechanic waves and light (or E.M.) waves obey to the same mathematic form of 

wave equation. So, like any other wave phenomena, the " matter waves or De Broglie waves ", no matter 

what is the meaning of their displacement "y", must obey to the same wave equation; i.e. (in 1D space) 
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     "y" is the 'displacement ' of matter wave;              ' υ ' is its propagation speed 

     "x" is the space variable;                                        " t " is the time variable 

 

- As the selection rule of  "allowed orbits" in Bohr’s model is due to a resonance condition for e- waves, 

the function of these waves must be expressed as  product of two functions; one space-dependent and one  

time-dependent  ( remember the form of 1D resonant waves on a string " )cos(*sin(kx) 2 tAy   " ). 

So, one can write the wave function of  an  e 
-
 bound in an atomic orbit  in a 1D spatial model in the form 
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where the function ψ(x) is a function of space coordinates. 
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In the following, one uses the wave equation (8) to get a way for definition of space-dependent function. 

 

Second order derivatives  of   (9) are:      )cos(
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By substituting the expressions (10,11) into equation (8) one gets        
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As e
-
 energy  is        
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one get            
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One usually uses     
 

  
  known as the reduced Planck constant  in quantum mechanics expressions.   

 

 

Then, by substituting (14) at (12) one gets              
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or       
  

  

  

   
                  and        

  

  
 
  

   
                             (16)  

 

 

which is written mostly as                                                                                                   (17) 
 

"U(x)" is the potential energy function, "H" is the Hamiltonian operator, "E" is the energy of quantum system.  

 

The equation (15,16,17) is known as one dimensional time-independent Schrödinger wave equation.  

When applied for atoms with a single bound electron (like H atom), it has solutions n only for a set of  

energy values  En that fit to Bohr's expression. Note that this equation provides the energy levels and the 

corresponding n  functions even for atoms with many electrons. Schrödinger equation was the decisive  

step in the development of quantum mechanics.  

 

- What does represent the wave function of a quantum particle? Max Born provided the physical meaning 

for the wave function attached  to a quantum particle. One can get it by interpreting the relation between 

the light wave intensity and the number of photons in the frame of diffraction model. At first, one should 

remember that the intensity of light wave at a point is proportional to the number of photons at this 

location, i.e. it is proportional  to  the  probability of finding a photon  at  this point. As the light intensity 

is proportional to the "square of displacement " of light wave (i.e. E
2
(x,y,z) function), it comes out that the 

square of light wave displacement function
  

at a location is proportional to the probability of finding a 

photon there. The single slit diffraction pattern in fig. 5 visualizes the relation between light intensity "I" 

and density of photons on  screen. As governed by same rules, the diffraction of quantum waves associated 

to electrons by a narrow  slit  produces a similar pattern as that of photons (light wave) diffraction(Fig. 5).  
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Fig 5                                                         

                                                            

- The expression (19) is known as the normalization condition  and  the function 
2
(x,y,z) represents a  

density of probability in the frame of the probability theory. Accordingly, the quantum wave function 

(x,y,z) contains a probabilistic information and the language of quantum mechanics is a probability  

language. So, there is no sense to talk for the exact position of a quantum particle but it does make sense  

to say that " it is more likely to observe the  particle at locations where 
2
(x,y,z) is larger ".  

 

- The wave equation (15-17) contains only one space coordinate and its solutions are wave functions of one  

coordinate. When studying a problem in the 3D space, one deals with three dimensional wave equations 

and  the solutions are -functions of three variables (x,y,z). The shapes of the "probability clouds" in fig 6  

correspond to the graphs of 3D functions n(x,y,z) in the case of  H-atom. They contain the circular  Bohr  

orbits and have the same number of nodes as predicted by de Broglie rule for the " resonant  e- waves ". 

 

 
 

THE HEISENBERG UNCERTAINITY PRINCIPLE 

 

-Quantum mechanics is based on the postulate that both light and matter have dual behavior and the 

square of wave function 2
(x,y,z) gives the probability of finding a quantum particle at a given position. 

But, a particle is localized at a position of space while a wave is not. How to overcome this discrepancy?  

           

I 
Based on this correlation, Max Born postulated that the square of the 

 wave function 
2
(x,y,z) of a quantum particle is proportional to the 

 probability of finding this particle at a given location (x,y,z) of space.  

Next, he determined the probability of finding the particle within  

an infinitely small space volume dV  as 

 

                                            
2
(x, y, z)

 
dV                                           (18)  

 

and the probability to find the particle somewhere within the whole 

space as      

                                                 
  

  
                                       (19) 

 

Fig.7 shows a wave packet which has both wave and particle 

properties. The regular spacing av between consecutive maxima is a 

wave characteristic and it does have a limited extension 2x in space 

(like a particle), too. To understand what way this wave packet is built, 

one might remember the superposition of two sound waves with close 

values of wavelengths ,’ that produces the sound beats. Actually, the 

shape of a sound beat’s wave contains many such wave packets. One 

may show (by calculation) that, by increasing the number of superposed 

waves with very close -values, the result forms  a single wave packet 

like this in fig.7; av  is the average value of all superposed wavelengths. 

Fig.6  Wrapping of 3D standing waves around 

Bohr’s orbits. So that e
-
 standing wave fits to 

a given circular Bohr’s orbit, the 

circumference length of this orbit must be 

equal to an integer number of electron 

wavelength. The number of hosted  λ is equal 

to quantum number n (1,2,3,4...) of  e
-
 orbit. 

   Δx           xBest      Δx   

Fig.7 
Direction of particle motion 
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- The fact that the wave packet contains many wavelengths means a certain a spread  around av. This 

spread brings automatically (due to relationship  p = h / ) the existence of a related uncertainty p for its 

linear momentum p. The uncertainty principle of Heisenberg states that:  The absolute uncertainties of 

position and linear momentum of a quantum particle are interdependent. For a quantum particle in 1D 

space, if one measures simultaneously "x" and "px", their absolute uncertainties obey to the condition     

 

                                                                 hpx x  *                                                                 (18) 

 

-This means that, no matter what is the perfection of experimental set up, at the best,  one may expect only 

to get results that provide   Δx*Δpx = h and there is no sense to look for Δx*Δpx < h. One cannot measure 

simultaneously both the position and the linear momentum of a quantum object with an arbitrary 

precision. So, let's assume that one measures simultaneously the position and the linear momentum of a 

quantum particle and finds out the uncertainties x, px. Next, by changing the technique of 

measurement, one improves the precision for position measurement (x decreases). The principle (18) 

tells that the precision for linear momentum measurement will deteriorate (px increases).  This comes as 

a  fundamental restriction imposed by nature and there are no experimental ways one may skip it.  

 

-It is important to mention that Heisenberg found this principle by analyzing the process of measurement 

for quantum particles. Here it is one example that allows to get to this principle. Consider the diffraction of 

a beam of electrons at same velocity(i.e. same linear momentum p)  by a single slit (fig 8). Its diffraction 

pattern is the same as that of a monochromatic light  with corresponding wavelength (λ=h/p). This means 

that one would record a minimum number of diffracted electrons along direction θ=θs=1 that corresponds to 

the " first minimum of single slit diffraction " and just a few electrons beyond it. One might estimate that, 

at the slit output,  the   y-coordinate of a diffracted electron has an uncertainty Δy ≈ a/2  and find out that,  

                                            sin2/2/sin/sin  yya                         (19) 

 

                                                                    
    Fig 8                                                             

                          By multiplying side-by-side the two expressions (19) and (20) one finds out that 

 

                                                                         2/* hpy y                                                         (21) 

 

Note: The precise mathematical expression for uncertainty principle used in quantum theory is written as 

  

                                                                                                                                             (22)                                                 

        and y, py  stand for the standard deviations of position and linear momentum components. 

Note that linear momentum of e- has the uncertainty                

py ≈ psin (fig 8) if it falls inside of central maximum.  

Meanwhile, some electrons fall out of the central maximum. 

This means even larger uncertainty for the linear momentum 

of an electron that pass through the slit. In other terms, at 

the output of slit, the uncertainty of linear momentum for 

electron is at least " psin". One can express this situation 

by the mathematical condition   

                  


 sinsin
h

pp y                          (20) 

 

a 
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As this course does not consider the details of quantum mechanics, we will refer to the expression (18) 

which means a more conservative restriction (4π times larger) for the correlated uncertainties. So, when 

solving quantum mechanics problems in this course, one may use the Heisenberg principle for the 

components of coordinate and corresponding linear momentum as  

                                                                       hpx x  *  

                                                                       hpy y  *     

                                                                       hpz z  *  

 

- The principle of uncertainty applies to all other couples of  " conjugated quantum variables " , too.  

For example, the uncertainties of measurement for time and energy are related similarly  

 

                                                                       htE  *                                                              (23) 

( or more precisely           )  

 

One may derive expression (23) from (18) by referring to a free (i.e. no potential energy)                 

quantum non relativistic particle moving at " constant speed υ " along Ox axe. Its total energy versus 

frame Ox is  E = E0+K.  So, one get  ΔE = ΔE0+ ΔK= ΔK (ΔE0=0 because its rest energy does not change).  

  

As                
             and              

          
                             (24)                               

 

 

when referred to motion along Ox, one get                  ΔE = ΔK =  υΔpx                                               (25)  

 

       

Next,  as  t = x / υ                                               Δt = Δx / υ                                                                    (26) 

 

By multiplying both sides of  (25 ) and (26)  one get    ΔE* Δt  =  (υΔpx) * ( Δx / υ)  =  Δx*Δpx     ≥  h 
 

 

- There are two important consequences that come out from expression (23); 

a) If one wants more precise energy measurements (i.e. to decrease ΔE ) for a quantum object 

    (molecule, atom, electron...), one must increase the observation time ( i.e. increase Δt ).   

b) The lifetime τn of an atomic energy level En is the average time that an electron spends at this 

level before leaving it for a natural transition  towards lower energy levels. Even though this time  

may get values from 0 to infinity (Fig.9), the measurements show that, for " excited "  states, the 

average lifetime has values τn ~ 10
-6

 ÷ 10
-9

s (it can be as long as 10
-3

s at "meta-stable" quantum states).  

 

 

 

 
                  τn_av                              t 
          Fig. 9 

 

Then, from (23), one can find out that the uncertainty of energy level En  is  ΔEn ≥ h / Δtn ≥ h / τn 

 

      Note that, for a fundamental level of energy τ1 = ∞  and  relation (23) gives ΔE1= h/∞ = 0.   

Δt As one may see from fig.9, the average value of τn and 

uncertainty Δtn of the time an electron spends at excited 

quantum level En have similar values. So, in uncertainty 

calculations for energy levels, one can simply take  Δtn = τn. 

 



 10 

During a spontaneous transition from En to E1 , the quantum system emits one photon with energy  

             .   The energy of this photon   has a "minimum possible" value of uncertainty  

  

                                                                  
 

   
                                   (27)       

 

This means that, in general, the uncertainty in energy of an emitted photon is              . 

 

 As the frequency of this photon is    f = εphoton  / h ,   one can find out the uncertainty of frequency  

 

for the emitted wave  as                    Δ f = Δεphoton / h  ≥ (h/τn)*1 /h  ≥   1/ τn.                               (28) 

 

This relation shows clearly that the emitted wave has a sharply defined  frequency ( small Δf )           

if  the upper level (En) of transition has a long life time (large τn  value).  

 

If the transition happens between two exited energy levels, say from Ei to Ek, then, the emitted  

photon has the energy                   and the expressions (27, 28) become 

  

                                    
 

   
 

 

   
 

 

  
 

 

  
   

 

  
 

 

  
)                            (29) 

 

Subsequently,         Δ f ik = Δεphoton / h  ≥   
 

  
 

 

  
)*1 / h  ≥   

 

  
 

 

  
                                              (30) 

 

As a general rule, the spectral lines due to transitions between energy levels with long lifetime τn          

are sharp and vice versa. 


