Conservation of Energy
SOME NOTES ABOUT ENERGY
Karen Tennennhouse
Definitions
 A system means any group of objects we choose to examine. For a given system, we say that a force is internal iff it is exerted BY an object IN the system (on another object in the system). We say a force is external iff it is exerted BY an object which is NOT IN the system (on an object in the system).
 The definition of Work done by a constant force is:
which is also written as
The work measures the energy transfer caused by this force....... transfer from one object to another or from one energy form to another.
[The more general definition of work is:
.
For a one dimensional case, with parallel to the path, this integral can be found by taking the area of a graph of F versus ‘s’.
In this course, we will use this fact only once, to get our formula for elastic potential energy.]  Recall, the units of energy and work are , called Joules.
Equivalently, one Joule is the work done by one Newton of force acting parallel to one meter of displacement,i.e.
1 Joule = 1 Nm
(Caution: although Torques are also measured in Nm, they are not the same thing.)
Another unit of energy is the calorie (c).
1 cal = 4.18 Joules.
The food calorie (C) is 1 Cal = 1000 cals.
Some forms of Energy
 Kinetic Energy (KE): A moving object has more energy than the same object had when at rest; the difference is called the kinetic energy. For speeds much less than the speed of light (including all problems in this course)
 Heat(Thermal Energy): In any object or substance, the microscopic particles, (atoms, electrons, etc.) are always in random motion or vibration. For the substance to be warmer (higher temperature) actually means that the average KE of these random microscopic motions is larger than when the substance is cooler.
 Light carries energy.
 Sound carries energy.
 Mass is energy! The famous equation tells us how much energy is equivalent to an amount ‘m’ of mass. c is the speed of light, m/s , so one kg of matter contains an enormous J of energy.
 Chemical Energy. This is a somewhat sloppy but still useful term. When we encounter chemical energy in a mechanics problem, most often it is either the chemical energy of fuels (wood, gasoline, etc.) or chemical energy of a person’s body being used up (to enable the person to move, keep warm, etc. or to do work on other objects.)
 Gravitational Potential Energy (GPE) is energy which has been “borrowed” when we did work against gravity, and which gravity will “pay back” if the object returns to its earlier position. Near the surface of the Earth, whenever an object moves upwards by an amount , its GPE increases by an amount . Similarly, if the object moves down, it loses GPE.
 Elastic Potential Energy is energy which has been “borrowed” when we did work against a spring or other elastic force. We will see that Elastic where k is the constant of the spring, and is the amount of stretch or compression, measured from the relaxed position of the spring.
 Electrostatic Potential Energy is energy which was borrowed when we did work against electrical forces (for example, by pushing two samesign charges closer together.) You’ll learn more about electrostatic PE next year, in Physics NYB.
We define the Total Mechanical Energy (written TME or just ME) as the sum of ( KE + all forms of potential energy.)
But what is “potential energy”?
Why do we talk about “gravitational PE”, but NOT “frictional PE” or “muscle PE”?
 Some forces, such as gravity, are “honest borrowers.” That is, whenever we seem to lose energy by doing work against gravity during a certain trip, we know that gravity will pay back exactly the same amount of energy if the object does the reverse trip back to its previous position. In fact, if no other forces are acting on the return trip, gravity will pay back this loan in the form of kinetic energy.
 A force with this property is called a conservative force. (Notice, not the same thing as conserved or conservation.)
 Each kind of conservative force has a corresponding form of potential energy
Which forces are conservative?
Examples of Conservative Forces  Examples of NONConservative Forces 


Almost everything that’s not in the left column. In particular:

Roughly speaking, the mechanical forms of energy (KE and various potential energies) are related to “organized” motion of biggish objects. Nonmechanical forms, such as heat and chemical energy, are related to disorganized, random, microscopic events. The branch of Physics called Thermodynamics studies the interesting laws related to these ideas.
Law of Conservation of Energy
The most general form of the energy law is:
IF the net work done on a system by external forces is zero, THEN the total energy of the system (sum of all forms) remains constant.
In our present course, we mostly use this law to solve simple problems, and for qualitative questions.
There are two more specialized laws, which deal with the subgroup of mechanical energies.
In this course, we’ll solve most large, complex, energy problems using these two laws:
IF the net work done by nonconservative forces is zero, THEN total mechanical energy stays constant.
 You can abbreviate this law as:
 If , then
 at all times.
 In general,the change in the mechanical energy equals the net work done by nonconservative forces,i.e.
 You can probably see that the second law includes the first one as a special case.
Method for solving Large Energy Problems, using the mechanical energy laws
 Choose the SYSTEM.
 CHECK: Does the net work done by nonconservative forces add up to zero?
At this step we need to think carefully about each force which is acting on the system (both external and internal.) Is this force conservative or not?
 If not, does it do nonzero work?
 Write the LAW you plan to use:
If yes to B, plan to use at all times
If no to B, plan to use  Large, clear must include:
 Show and clearly label the different positions of the object.
 If the problem will involve GPE, choose and label the “zeropoint”, where you will consider h = 0.
 Label with symbols the relevant distances and angles that you will use in your equations.
 NB: This is NOT an isolation diagram.
 Show and clearly label the different positions of the object.
 Write out the EQUATION applying your chosen law to this problem.
 This is where you put in the specific energy forms or etc. which are present in this problem.
 Use careful symbols and subscripts.
 If you’re using , your righthand side may have one or several terms. The thinking you did for the “check” step will help you now.
 Make sure that any symbols for unknowns in your equation have been labelled in your main diagram.
 Substitute formulas and values. Solve. Express final answers.
 When sliding (kinetic) friction does work, it usually does negative work, making mechanical energy decrease. Some form of energy must increase, and usually it is heat (sometimes sound etc.) So for example, in a certain situation, if work done by friction is – 20 J, then heat or etc produced is + 20 J.
 We define power as the rate of energy transfer.
 Units of power are Joules/sec, usually called Watts.
 Average power by a certain force is
 Instantaneous power (derivative), but in our course, we are only using average or constant power.
 In almost all power problems in this course, just consider the energy changes in .
TYPES OF INTERNAL ENERGY